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Abstract

Extreme events in financial markets are often generated by shocks

that are generated within the system, rather than those that arrive

from outside the system. The combination of risk-sensitive behav-

ior rules and the coordinated actions implied by mark-to-market ac-

counting can result in outcome distributions with fat tails, even if the

fundamental shocks are Gaussian. We illustrate such “endogenous

extreme events” through the pricing density resulting from dynamic

hedging of options and the “flash crash” of May 2010.
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1 Introduction

The global financial crisis of 2007-9 and the market turmoil that accompa-

nied it have renewed interest in understanding the nature and consequence

of extreme events. Financial crises are often characterized by large price

changes, but large price changes by themselves need not constitute a crisis.

Public announcements of important macroeconomic statistics, such as the

monthly U.S. employment report, are sometimes marked by large, discrete

price changes at the time of announcement. However, such price changes are

arguably the signs of a smoothly functioning market that is able to incorpo-

rate new information quickly. The market typically finds composure quite

rapidly after such discrete price changes as the new information is absorbed

by the market.

Instead, we are interested in episodes where shocks are amplified by the

actions of the economic agents themselves. Rather like a tropical storm over

a warm sea, crisis episodes appear to gather more energy as they develop. As

financial conditions worsen, the willingness of market participants to bear risk

seemingly evaporates. The global financial crisis that erupted in the summer

of 2007 served as a laboratory for many such distress episodes.

Our objectives are somewhat different from the related asset pricing in-

quiry that has asked whether “rare disasters” can account for the risk pre-

mium puzzle in asset prices or the returns associated with carry trades.1

Rather than asking whether the prices prior to the crisis can be rationalized,

we address the crisis dynamic itself. Although we do not address the asset

pricing consequences directly, our discussion complements the asset pricing

inquiry by airing the possible mechanisms that may account for such extreme

events. Indeed, our contribution is to show that “rare disasters” are often

man-made rather than acts of Nature.

Our approach also differs from the statistical approach typified by Ex-

treme Value Theory (EVT). Economists have long recognized that the Gaus-

1Rietz (1988), Barro (2006) and Weitzman (2007) address the risk premium in asset

prices through the lens of rare disasters. Fahri and Gabaix (2010) argue that the possibility

of rare disasters can account for the excess returns associated with currency carry trades.

In a series of papers, Burnside, Eichenbaum, Kleshchelski and Rebelo (2006, 2007, 2008)

have explored the extent to which conventional asset pricing models can explain the returns

to carry trade positions, and point to the importance of rare jumps in the stochastic

discount factor itself - a form of peso problem. Plantin and Shin (2010) model the ”up

by the stairs, down by the elevator” price dynamics of carry trade currencies.
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sian distribution is not sufficient for describing economic variables, since at

least the work of Vilfredo Pareto (Pareto (1898)). Pareto blazed the trail

on the study of “fat tails” of probability densities based on the concept of

power laws. See, for example, Embrechts et al. (1996) for a survey of EVT

and power laws.

While Pareto applied his research to income distributions, such analysis

equally applies to returns and financial assets. Mandelbrot (1963) and Fama

(1965) showed that financial returns exhibit fat tails, with Jansen and de

Vries (1991) the first to apply EVT to finance. Since then we have seen a

large number of studies.

EVT provides many useful insights on extreme market outcomes. How-

ever, there are two key factors that limit the application of EVT in finance.

First, it only applies relatively far out in the tails, generally for events with

probability much less than 1%, and it can be quite challenging identifying

where exactly it applies. Secondly, it assumes the underlying data is iden-

tically and independently distributed, or that the tails exhibit a restricted

form of dependence. If the underlying data is subject to apparent structural

breaks, EVT becomes less relevant. This is exactly a feature of financial

returns.

Our approach is different, and emphasizes the man-made nature of ex-

treme events. The main theme of our paper can be encapsulated in terms

of the dual role of prices. By “dual role”, we mean that prices not only

reflect the underlying economic fundamentals, they are also an imperative to

action. That is, prices induce actions on the part of the economic agents. If

some actions are the consequence of binding constraints and exert harmful

spillover effects on others, then price changes can bring about amplifying

spillover effects that disrupt the smooth working of the market, and some-

times shut down the market completely. Financial crises could almost be

defined as episodes where the allocational role of prices break down. The

action-inducing role of price changes introduce distortions and cause an am-

plified spiral of price changes and actions that can cause great damage along

the way.

In order to motivate our discussion, it is useful to begin with an example

from outside economics and examine the case of the Millennium Bridge, first

discussed in Danielsson and Shin (2003). The discussion below draws on

Shin (2010).
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Lessons from the Millennium Bridge

The Millennium Bridge in London was constructed as part of the Millennium

celebrations in the year 2000. It was the first new crossing over the River

Thames for over a hundred years. The sleek 325 metre-long structure used

an innovative “lateral suspension” design, built without the tall supporting

columns that are more familiar with other suspension bridges. The bridge

was opened by the Queen on a sunny day in June, and the press was there

in force. Many thousands of people turned up after the tape was cut and

crowded on to the bridge to savor the occasion. However, within moments of

the bridge’s opening, it began to shake violently. The shaking was so severe

that many pedestrians clung on to the side-rails, as shown in video news clips

of the opening day.2 The bridge was closed shortly after the opening and

was to remain closed for 18 months.

When engineers used shaking machines to send vibrations through the

bridge, they found that horizontal shaking at 1 hertz (that is, at one cycle

per second) set off the wobble seen on the opening day. Now, this was an

important clue, since normal walking pace is around two strides per second,

which means that we’re on our left foot every second and on our right foot

every second. Walking produces a vertical force (depending on our body

mass) of around 750 Newtons or 165 pounds at 2 hertz. However, there

is also a small sideways force caused by the sway of our body mass due to

the fact that our legs are slightly apart. Anyone who has been on a rope

bridge should be well aware of the existence of this sideways force. This

force (around 25 Newtons or 5.5 pounds) is directed to the left when we are

on our left foot, and to the right when we are on our right foot. This force

occurs at half the frequency (or at 1 hertz). This was the frequency that was

causing the problems.

But why should this be a problem? We know that soldiers should break

step before crossing a bridge. For thousands of pedestrians walking at ran-

dom, one person’s sway to the left should be cancelled out by another’s sway

to the right. If anything, the principle of diversification suggests that having

lots of people on the bridge is the best way of cancelling out the sideways

forces on the bridge.

Or, to put it another way, what is the probability that a thousand peo-

ple walking at random will end up walking exactly in step, and remain in

2http://news.bbc.co.uk/hi/english/static/in depth/uk/2000/millennium bridge/default.stm.

See also the youtube video on http://www.youtube.com/watch?v=eAXVa XWZ8
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lock-step thereafter? It is tempting to say “close to zero”. After all, if

each person’s step is an independent event, then the probability of everyone

walking in step would be the product of many small numbers - giving us a

probability close to zero.

However, we have to take into account the way that people react to their

environment. Pedestrians on the bridge react to how the bridge is moving.

When the bridge moves from under your feet, it is a natural reaction to

adjust your stance to regain balance. But here is the catch. When the

bridge moves, everyone adjusts his or her stance at the same time. This

synchronised movement pushes the bridge that the people are standing on,

and makes the bridge move even more. This, in turn, makes the pedestrians

adjust their stance more drastically, and so on. In other words, the wobble of

the bridge feeds on itself. When the bridge wobbles, everyone adjusts their

stance, which makes the wobble even worse. So, the wobble will continue

and get stronger even though the initial shock (say, a small gust of wind) has

long passed.

Arup, the bridge’s engineers found that the critical threshold for the

number of pedestrians that started the wobble was 156. Up to that number,

the movement increased only slightly as more people came on the bridge.

However, with ten more people, the wobble increased at a sharply higher

rate.3 The wobble is an example of a shock that is generated and amplified

within the system. It is very different from a shock that comes from a storm

or an earthquake which come from outside the system. Stress testing on

the computer that looks only at storms, earthquakes and heavy loads on the

bridge would regard the events on the opening day as a “perfect storm”. But

this is a perfect storm that is guaranteed to come every day.

What does all this have to do with financial markets? Financial markets

are the supreme example of an environment where individuals react to what’s

happening around them, and where individuals’ actions affect the outcomes

themselves. The pedestrians on the Millennium Bridge are like modern banks

that react to price changes, and the movements in the bridge itself are rather

like price changes in the market. So, under the right conditions, price changes

will elicit reactions from the banks, which move prices, which elicit further

reactions, and so on.

The Millennium Bridge analogy serves to highlight the dual role of prices.

3http://www.arup.com/millenniumbridge/challenge/results.html. See also

http://www.youtube.com/watch?v=eAXVa XWZ8

5



Pedestrians 
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Prices change

Figure 1. Feedback in Financial Systems (Source: Shin (2010))

Not only are prices a reflection of the underlying economic fundamentals, they

are also an imperative to action. That is, prices induce actions on the part

of the economic agents. When actions are the result of binding constraints

and exert harmful spillover effects on others, then the double-edged nature

of prices exerts its biggest effect. The problem comes when the reliance

on market prices distorts those same market prices. The more weight is

given to prices in making decisions, the greater are the spillover effects that

ultimately undermine the integrity of those prices. When prices are so

distorted, their allocational role is severely impaired. Far from promoting

efficiency, contaminated prices undermine their allocational role.

Flash Crash of May 2010

The non-linear effects of the endogenous risk type plausibly arise in algorith-

mic trading environments, which have emerged as a central issue in market

microstructure and the regulation of exchanges and trading platforms.

Algorithmic trading either has actions hard-coded into their programs

that directly lead to positive feedbacks, or the algorithms do not have such

a behaviour coded directly into the programmes but some higher level inter-

ventions by the controlling or the supervising entity effectively can decide to

overrule the algorithm, and thereby create the feedbacks.

As an example, consider the “flash-crash” epsiode of May 6th 2010, when

the US stock market was buffetted by unprecedented turbulence in a short

period in the afternoon of May 6th. SEC (2010) is the official report on the

episode from the US Securities and Exchange Commission. Irrespective of

whether or not the official version of the events of May 6th 2010 turns out

to be accurate and complete, it outlines a possible scenario whereby some

algorithms may directly create feedback effects due to a lack of common sense

in the coding.

In a nutshell, a simplified scenario would be as follows. An execution
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algorithm by a investing firm is directed to sell a large number of securities.

The algorithm gauges the market impact it may have by looking at the

market volume and is instructed to sell more if the volume is higher. Whereas

in many market-sensitive trading stratgies it is prices that play the dual roles

of gauges of value as well as of imperatives to act, in this case volumes play

the dual role of indicators of intensity of transactions as well as the role of

imperatives to be followed.

The original large sale finds buyers, most likely high-frequency traders

(HFTs) given their speed advantage. If it turns out that there are no new real-

money investors stepping in, the algorithms of the lightly capitalized HFTs

that act as market makers may pass the securities around like a hot potato,

generating more volume. This volume then teases the original algorithm to

sell even more, closing the feedback loop until far out-of-the-money limit

orders are hit and the order books are emptied. The destabilizing feedback

loop in this instance has been brought about through the interaction of two

distinct algorithms. Diagrammatically,

general algo selling⇒ HFTs pass the parcel, wait for real money investor

⇑ ⇓
execution algo sells more if volume is up ⇐ volume shoots up

There are many more such sources of endogenous risk in computer-based

trading, see for instance Shin and Zigrand (2011).

So far, the analogy between the Millennium Bridge example and the fi-

nancial market has been informal. In order to illustrate the effects in more

detail, we will now examine a specific case of endogenous amplification in

financial markets due to the dynamic hedging of options. Dynamic hedging

in general refers to the practice of active adjustment one’s portfolio so as

to leave the portfolio hedged against future shocks. The specific case we

examine is the dynamic hedging of options, drawing on the discussion in

Danielsson and Shin (2003) and Shin (2010).

2 Dynamic Hedging of Options

In the 1980s, specialized fund managers put into practice the principles that

underpin the Black and Scholes (1973) model for option pricing and set up

funds that became known as portfolio insurers. Bookstaber (2007) gives a

first-hand description from a practitioner on the scene at the time.
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Portfolio insurance attemps to replicate the payoffs that arise from hold-

ing a put option by trading actively in the market. A put option gives the

holder the right (but not the obligation) to sell a particular asset at a pre-

agreed price (the strike price, or exercise price) at a particular date in the

future (the expiry date). At the expiry date, the value of the put option is

large when the price of the underlying asset is far below the exercise price,

since the holder of the put can buy the underlying asset at the low prevailing

market price, and then sell it at the higher exercise price, pocketing the dif-

ference. When the price of the underlying asset is above the exercise price,

the holder of the option will not exercise the option, and the option will

expire worthless.

Before the expiry date, the option has a value that is above its value at

expiry, since the price  of the underlying asset at expiry is uncertain. Even

if the current price  is above the strike price , there is a chance that 

will drift lower below  before expiry. As long as this is a possibility, the

option has a positive value. The farther in the future is the expiry date, the

greater is the uncertainty, and the greater is the value of option for any given

price of the underlying asset today.4 The value of a put option is increasing

when the price  falls. Also, the rate which the option increases in value is

itself increasing as  falls.

Replicating the payoff of a put option through dynamic hedging attempts

to position one’s portfolio in reaction to price changes in order to mimic the

payoffs from a put option at expiry. There are two requirements. Since

a put option pays out more when price is low, this means maintaining a

short position in the underlying asset. Since the slope of the put option’s

value becomes steeper as the price falls, this means taking an even larger

short position when the underlying asset falls in price. In other words,

dynamic hedging dictates that when the price falls, you sell more of the asset.

Replicating a put option through dynamic trading entails a “sell cheap, buy

dear” strategy.

Why might it make sense to replicate a put option, rather than just

buying a put option? Options that trade in organized exchanges are limited

to certain well-established markets, and only for relatively short expiry dates.

For very long-dated options, or for specific portfolios, dynamic replication

may be the only avenue open to an investor if he/she wishes to attempt to

4This may not be true if the risk-free interest rate is very high, but we assume for the

sake of simplicity that the risk-free rate is zero for the rest of the section.
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hedge the value of an investment holding. One could approach one of the

large banks or securities firms and ask it to sell an option to you. But

you will need to pay for the privilege of buying the option. For instance, a

fund manager who has sold long-term retail funds that guarantee the initial

investment, the implicit put must be replicated in some way.

For the bank that sells you the option, it is incurring the liabilities gen-

erated by having sold the option. For this reason, even if the bank sells you

an over-the-counter (OTC) option tailored to your needs, this does not mean

that dynamic hedging becomes irrelevant. Once the bank sells the option

to you, the bank is holding a risky liability, and will want to hedge this risk.

The burden of replication is placed on the bank that has sold the option.

So, as long as some party has to bear the risk of the liabilities generated by

the option, dynamic hedging becomes relevant.

2.1 Delta Hedging

In its simplest form, dynamic hedging relies on the delta of the option. To

fix ideas, focus on the task of replicating the payoff of a put option. The

delta of a put option is the rate of change of the put option price with respect

to the change in the price of the underlying asset. Thus, if  is the price of

the put option and  is the price of the underlying asset, the delta ∆ is given

by ∆ = . For a put option, its delta lies between −1 and 0. Black

and Scholes in their famous paper on option pricing noted that the portfolio

consisting of: ½
∆ underlying asset

−1 put option

is locally risk-free with respect to changes in . This is because when the

price changes slightly, the gain from the holding of the underlying asset (given

by ∆) is matched by an exactly offsetting loss in the price of the put option

(−∆). This insight is used in the derivation of the Black-Scholes formula

by arguing that the above portfolio must earn same return as the risk free

asset.

The delta of a put option can be pictured in Figure 2. The delta is the

slope of  with respect to , and hence lies below the horizontal axis. The

delta goes to −1 as the price of the underlying security  falls, and tends to
0 as the price of the underlying security increases. As time progresses to the

expiry of the option, the price of the option gets closer to the kinked curve

9



1

0
X

S

P

SX 



Figure 2. Delta of Put Option

with the kink at the exercise price . So, the delta behaves more like the

step function that jumps from −1 to 0 at exercise price .
At expiry, there are two possible values of delta. If the option expires “in

the money” so that   , then we are on the negatively sloped part of the

curve so that ∆ = −1. However, if the option expires “out of the money”,
we are on the flat part of the curve so that ∆ = 0.

The payoff from the put option can be replicated by holding a suitable

portfolio of the underlying asset and cash, and adjusting the position over

time in response to realised outcomes. Suppose a trader starts with a cash

balance of  , and suppose that  is also the market price of the put option

that the trader wishes to replicate. With this wealth, the trader can either

purchase the put option itself, or purchase the portfolio given by:½
∆ underlying asset

−∆+  cash
(1)

The value of this portfolio is also  , since the ∆ units of the underlying asset

has price −∆. Remember that ∆ is negative since the trader wishes to

replicate a put option. The portfolio given by (1) is financed by selling short
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Figure 3. Delta following price change

|∆| units of underlying asset at price , and adding the proceeds to the cash
balance.

Now, suppose price changes to 0. The value of the portfolio at the new
price is

short assetz }| {
∆ · 0 +

cashz }| {
 − ∆

=  +∆ (0 − )

'  0

where  0 is the price of the put option given price 0. Figure 3 illustrates

the change in the price of the portfolio following the price change, and how it

relates to the shift in the price of the put option itself. The trader manages

to approximate the wealth of a trader who starts out by holding the put

option itself, in the sense that the trader’s portfolio value moves along the

tangency line at the old price . Since the approximation is linear, the

accuracy of the approximation is greater the smaller is the price change.

After the price change, the trader can repeat his procedure at the new
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price 0. At the new price 0, the investor forms the new portfolio:½
∆0 underlying asset

−0∆0 +  0 cash
(2)

which is affordable (approximately) given his new wealth of  0. Suppose that
the trader repeats this procedure of forming the new portfolio in response to

price changes so that he maintains a position of ∆ in the underlying security,

and where the cash position adjusts as a result of the shift in the portfolio.

When the price falls, the delta becomes more negative, meaning that the

trader sells more of the underlying security, and thereby adding to the cash

balance by the amount of the dollar value of securities sold short in that

round. Conversely, if the price rises, then the delta becomes less negative,

meaning that the trader has to buy back some of the security, thereby dipping

into his cash balance to make the purchase. The cash balance will adjust in

this way as a result of new sales and purchases.

Proceeding in this way, let us suppose that the trader reaches the expiry

date of the option. There are two cases we need to consider, depending on

whether the option expires in the money or out of the money. If the option

expires in the money (i.e. when the price  is below the exercise price ),

we have ∆ = −1, so that the portfolio given by (2) is½ −1 underlying asset

 + ( − ) cash

In this case, the trader has a balance sheet in which he has cash of +( − )

on the asset side, and 1 unit of the underlying security on the liabilities side.

The difference between the two is the equity of the trader. Since the price

of the underlying security is , the value of equity is

 + ( − )| {z }
asset

− |{z}
liability

=  −  (3)

Another way to think about this is to imagine the trader buying back the

one unit of the security at expiry, at the price of . With a cash balance of

 + ( − ), paying out  leaves the trader with  −  .

The second case is when the option expires out of the money. In this

case, the price of the underlying security  lies above the exercise price .

So, the portfolio (2) takes the particular simple form:½
0 underlying asset

0 cash
(4)
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In this case, the equity of the trader is zero. So, taking account of the two

possible cases taken by the trader’s portfolio at the expiration date, the final

value of the trader’s portfolio is the larger of − and zero. In other words,
the payoff at expiry of the trader who follows the strategy of keeping a delta

position in the underlying security is given by

max { −  0}

But this payoff is exactly the payoff achieved by the alternative strategy for

the trader in which he pays  to buy one unit of the put option, and holds

it to expiry. In this way, the strategy of hedging by holding a delta position

in the underlying security enables the trader to mimic the payoff of buying

a put option and holding it.

2.2 Numerical Example

Let us first examine a numerical example for the case where returns are given

exogenously - that is, unaffected by the actions of the traders. This is the

case made famous by Black and Scholes (1973) and examined in textbooks,

such as Hull (2009). Suppose the initial price of the underlying security is

100. A trader wishes to replicate the payoff of the put option with strike

price 90 by rebalancing his portfolio at the end of each week. We suppose

that the trader starts with a zero cash balance, but can borrow and lend at

some risk-free rate . The option expires in 20 weeks. Suppose also that

the process governing the evolution of the security’s price is such that the

Black-Scholes (1973) option pricing formula is valid.

According to the Black-Scholes formula for option pricing, the delta of a

put option at time  is given by

 (1)− 1

where  () is cumulative distribution function of the standard normal, and

1 is given by

1 =
ln
¡



¢
+
³
 + 2

2

´
( − )


√
 − 

where  is the exercise price of the option,  is the price of underlying asset,

 is the risk-free interest rate and  is the expiry date of the option and  is
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Table 1. No Feedback, In the Money
Week T - t Random Price log(p/x) d_1 Delta Purchases Cash Flow Cash Stock

0 0.385 100.000 0.105 0.757 -0.224 -0.224 22.450 22.450
1 0.365 -0.026 97.378 0.079 0.597 -0.275 -0.051 4.944 27.394
2 0.346 0.014 98.738 0.093 0.704 -0.241 0.034 -3.397 23.997
3 0.327 -0.046 94.213 0.046 0.392 -0.348 -0.107 10.065 34.062
4 0.308 0.015 95.617 0.061 0.506 -0.306 0.041 -3.944 30.118
5 0.288 0.006 96.144 0.066 0.559 -0.288 0.018 -1.764 28.353
6 0.269 0.021 98.138 0.087 0.732 -0.232 0.056 -5.502 22.851
7 0.250 -0.047 93.485 0.038 0.366 -0.357 -0.125 11.684 34.535
8 0.231 0.024 95.685 0.061 0.570 -0.284 0.073 -6.955 27.580
9 0.212 -0.037 92.180 0.024 0.266 -0.395 -0.111 10.227 37.807

10 0.192 -0.010 91.283 0.014 0.184 -0.427 -0.032 2.901 40.708
11 0.173 -0.048 86.910 -0.035 -0.284 -0.612 -0.185 16.054 56.762
12 0.154 -0.045 83.001 -0.081 -0.777 -0.781 -0.170 14.072 70.834
13 0.135 -0.037 79.944 -0.118 -1.246 -0.894 -0.112 8.977 79.811
14 0.115 -0.043 76.546 -0.162 -1.864 -0.969 -0.075 5.761 85.572
15 0.096 -0.020 75.005 -0.182 -2.312 -0.990 -0.021 1.557 87.129
16 0.077 0.044 78.313 -0.139 -1.971 -0.976 0.014 -1.093 86.036
17 0.058 -0.036 75.531 -0.175 -2.889 -0.998 -0.022 1.692 87.728
18 0.038 -0.047 71.989 -0.223 -4.530 -1.000 -0.002 0.139 87.867
19 0.019 0.011 72.788 -0.212 -6.105 -1.000 0.000 0.000 87.867
20 0.000 -0.035 70.236 -0.248 -1.000 0.000 0.000 87.867

standard deviation of return of the underlying security. The Black-Scholes

formula for the price for the put at  is

 = −(−) (−2) +  ( (1)− 1)
where 2 = 1 − 

√
 − . For economy of notation, set  = 0. Quantities

such as the time to expiry  −  and volatility  will be measured in units

of years. In the case we want to examine, there are 20 weeks to expiry, so

that the time to expiry at the initial date is 0.3846 years. The exogenous

returns are drawn from a normal density for weekly returns that is consistent

with a 25% yearly volatility . The returns each week are assumed to

be independent. The annual standard deviation is converted to a weekly

standard deviation by dividing by the square root of 52, the number of weeks

in a year.

Table 1 shows draws where the returns are unfavorable to the security

value so that the put option ends up in the money. Initially, the price is

100, and the trader begins with a short position in the underlying security

of −02245. However, the return in the first week is −26%, lowering the
price to 97.38. The delta becomes more negative, at −02753, which is met
by the trader selling additional units of the risky security, and adding 4.94 to

the cash balance. At the end of the first week, the trader has a cash balance

of 27.39, as seen in the last column.

Proceeding in this way, the trader adjusts his portfolio at the end of each
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week in response to the weekly realised return. The random draws push the

security price down, so that at the end of the 20 weeks, the security price

ends up at 70.24. The option ends up in the money, and the delta goes to

−1 rapidly in the last few weeks. The cash balance at the end of the 20

weeks is 87.87.

At the end of the 20 weeks, the trader has a portfolio consisting of a cash

balance of 87.87 and a liability of one unit of the risky security. Since the

price of the security is 70.24 at that date, the equity of the trader is given by

8787− 7024 = 1763

Having started off with a zero cash balance, 17.63 is the net gain from having

replicated the put option. We can compare this outcome to the alternative

that was open to the trader of buying one unit of the put option and then

waiting for the expiry of the option at the end of 20 weeks. The Black-

Scholes price of the option at date 0 with strike price 90 is 2.17. Meanwhile,

the option ends up in the money by the difference between 90 and 70.24.

Hence, the net gain to the trader is

90− 7024− 217 = 1759

which is very close to the 17.63 that is made by the trader who uses delta

hedging to replicate the put option. In this particular numerical example,

the outcome of the delta hedging is extremely close to the outcome given by

buying and holding the put.

Delta hedging rests on being able to sell the security when the price falls,

and buying the security when its price rises. In other words, it is a strategy

that chases price moves up or down. The strategy rests on there being

someone who buys when you want to sell. However, when there is feedback

from the actions of traders to the price moves seen on the market, then

there is the potential for amplified responses, where price falls elicit more

selling, which pushes price down, which then elicits further selling. When

the conditions are ripe (on which more below), delta hedging can generate a

price spiral where selling and market dynamics create a feedback loop.

To illustrate such a possibility, let us examine a slightly modified version

of the example with a price feedback effect where sales and purchases impact

on price changes in the market. The idea is that selling creates downward

pressure on price and buying creates an upward pressure on price.
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Table 2. With Feedback, In the Money
Theoretical Actual Cash Cash

Week T - t Random Price Price Delta Purchases Flow Stock
0 0.385 100.000 100.000 -0.224 -0.224 22.450 22.450
1 0.365 -0.026 97.378 97.378 -0.275 -0.051 4.944 27.394
2 0.346 0.014 98.738 93.793 -0.362 -0.086 8.095 35.490
3 0.327 -0.046 94.213 81.400 -0.736 -0.374 30.480 65.969
4 0.308 0.015 95.617 52.133 -1.000 -0.264 13.759 79.728
5 0.288 0.006 96.144 38.662 -1.000 0.000 0.002 79.730
6 0.269 0.021 98.138 39.461 -1.000 0.000 0.000 79.730
7 0.250 -0.047 93.485 37.591 -1.000 0.000 0.000 79.730
8 0.231 0.024 95.685 38.475 -1.000 0.000 0.000 79.730
9 0.212 -0.037 92.180 37.066 -1.000 0.000 0.000 79.730

10 0.192 -0.010 91.283 36.705 -1.000 0.000 0.000 79.730
11 0.173 -0.048 86.910 34.946 -1.000 0.000 0.000 79.730
12 0.154 -0.045 83.001 33.375 -1.000 0.000 0.000 79.730
13 0.135 -0.037 79.944 32.145 -1.000 0.000 0.000 79.730
14 0.115 -0.043 76.546 30.779 -1.000 0.000 0.000 79.730
15 0.096 -0.020 75.005 30.160 -1.000 0.000 0.000 79.730
16 0.077 0.044 78.313 31.490 -1.000 0.000 0.000 79.730
17 0.058 -0.036 75.531 30.371 -1.000 0.000 0.000 79.730
18 0.038 -0.047 71.989 28.947 -1.000 0.000 0.000 79.730
19 0.019 0.011 72.788 29.268 -1.000 0.000 0.000 79.730
20 0.000 -0.035 70.236 28.242 -1.000 0.000 0.000 79.730

For concreteness, first consider the case where the realized return from

date − 1 to  is given by
1 +  +  (5)

where  is the exogenous random return given in the third column of the

tables examined above and  is the purchase of the security as given by the

column in the tables labelled as “Purchases”. This is the purchase dictated

by delta hedging, where the portfolio is required to be rebalanced after the

price change to reflect the new value of the optional delta. Since the trader

maintains a position in the security of delta of the option, the “Purchases”

column reflects the change in the delta from one date to the next.

Table 2 tracks the outcome over time. There are now two columns for

the price sequence. First there is a “Theoretical Price” column that reflects

just the exogenous returns {}. But the column marked “Actual Price”

incorporates the selling and buying pressure  also. At date 0 the starting

price of the security is 100, the delta is −02245, so that the trader’s portfolio
at the end of date 0 consists of a short position of 0.2245 units of the security

and a cash balance of 22.45. At the end of week 1, the fundamental return

is −226%, which drives down the price to 97.38, as before in Table 1.
However, this is when the downward spiral begins to gather momentum.

The sale at the end of date 1 feeds into the return for week 2. The “funda-

mental” return in week 2 is positive, namely 14%. However, this positive
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fundamental return is swamped by the downward pressure on prices exerted

by the sale of 0.0508 units of the security at the end of week 1. The realized

return that combines the fundamental shock and the downward pressure on

price from sales is given by

0014− 00508 = −00368

so that the actual price at the end of week 2 is given by

9738× (1− 00368) = 9379

This compares with the theoretical price of 98.74 that takes account only of

the exogenous return. The potency of the feedback effect then takes a grip

on the price process. With each massive sale in one period, the return in

the subsequent period is depressed, which generates more sales, and so on.

The upshot of the feedback is clear from the price path in Table 2. The

price falls very rapidly from the starting price of 100. By the end of week

4, the price has crashed to 52.13, compared to the theoretical price of 95.62.

The column tracking the delta of the option reflects the rapid price decline.

By the end of week 4, the delta has in effect reached its lower bound of −1.
Once the delta reaches −1, the price of the security remains deep in the
money, and so the delta remains at −1 until the expiry of the option. Since
there is no further change in the delta, there is no trading of the security

either. Figure 4 plots the price paths with and without feedback for the

case where the option ends up in the money.

At expiry, the security’s actual price has crashed to 28.24. The cash

balance of the delta-hedging trader stands at 79.73. Since the trader has a

liability of 1 unit of the security, the equity of the trader is

7973− 2824 = 5149

Had the trader bought the put option at date 0 at the Black-Scholes price of

2.17, the net position at the time of expiry would have been

90− 2824− 217 = 5959

which is substantially larger than the outcome of the delta hedging. Again,

this is an illustration that when there is feedback, the Black-Scholes formula

is underpricing the put option.
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Figure 4. Price paths with and without feedback, out of the money case

3 Numerical Simulation of Dynamic Case

Building on the simple example of feedback avove, we now investigate more

systematically the potential underpricing of the option when feedback effects

are neglected.

We will proceed by developing the simple example above by incorporating

not only the price pressure generated by sales and purchases, but we make

the more realistic assumption that the market price reverts back to some

fundamental value after the price shock due to a sale or purchase. In other

words, the price shock due to a sale or purchase is only temporary. Kyle

(1985) has popularized the concept of “resiliency” of the market to describe

such a reversion to the fundamental price.

In addition, we will examine the case where the strike price of the option

to be hedged also shifts, in line with the current market price. This feature

is designed to capture the idea that the hedging strategies put in place by

market participants will closely mirror the current prevailing market price.

Specifically, the simulation is set up as follows. The option expires at

date  , and the remaining time to expiry is  −. Time is measured in units
of one year, as before. At the beginning, the agent decides to dynamically
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replicate a put option, with strike price  set at fraction  of yesterday’s

price, i.e.,  =  , rebalancing every  = 1365 years, so the agent re—

balances everyday. This means that the agent starts out being fully delta-

hedged. The number of days when the agent does this is denoted by  , so

at the beginning of the period,  −  = . The annual volatility of returns

of the underlying asset is indicated by .

On the day after the option expires, the agent may decide to repeat the

experience. We indicate the number of times agent does this by .

The sequence of agents actions is as follows. We indicate the days by .

Then the sequencing in other numerical simulation is given as follows.

day 1 Price, 1 is realized

day 2 1. The strike price  adjusts to  = 1

2. Calculate the option delta ∆2

3. At all times the agent maintains delta position ∆ in the underly-

ing asset.

day 3 onward The agent recalculates ∆, and depending on whether the

market went up or down, buys or sells. The agent’s repurchase of stock

is ∆ −∆−1

In the absence of the agent, the price evolves by Brownian motion,

 = −1
³
1 + + 

√


´
(6)

where

 ∼ (0 1)

However, suppose that the set of agents in aggregate who engage in the trade

is large. Therefore, as a group, they exerts a significant price impact with

their purchases. The price impact is denoted by   0. The price dynamics

that take account of the impact of sales and purchases modifies (6) so that

 = −1
³
1 + + 

√
 +  (∆ −∆−1)

´
(7)

In other words, the price change reflects the aggregate sales or purchases of

the agents, which in turn is the change in the delta of the option.

So far, we have examined the analogous case to the simple tabular exam-

ple examined in the previous section. Let us now introduce the feature that,
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after the initial price shock due to the sale or purchase, the market price

reverts back to some fundamental value over time. Therefore, the impact of

the agent’s trading decision will slowly reverse. In the terminology of Kyle

(1985), the market exhibits “resiliency”..

Assume that the price impact of sales and purchases is slowly reversed, at

a constant rate, over  days. Therefore, at each future day fraction 1 of

the initial shock (∆ −∆−1) reverts. On any given day, price impacts over
many previous days of trading are reverting. We denote the amount that

reverts every day by , so

 =
1



X
=1

(∆− −∆−−1)

Therefore, we need to modify (7) to take this into account, and get

 = −1
³
1 + + 

√
 +  (∆ −∆−1)− 

´
(8)

This is the form of the price function that we will now examine in our nu-

merical exercise. The pricing function (8) differs from the simple tabular

example above in two ways. First, the strike price of the option being hedged

depends on the current price, rather than being fixed. Second, the price im-

pact of trades is only temporary, and eventually the market reverts back to

fundamental value.

3.1 Simulation

In the simulations reported below, we set the annual volatility at  = 025,

the number of time periods at  = 30, the annual risk free rate at  = 005.

The number of days for the price impact to revert was set at  = 30. The

strike price fraction is  = 09, and finally, the price impact factor is set at

 = 025.

We report two different types of results below. First we present a plot of

a sample price path, where we fix the realization of the shocks and compare

the price paths for  = 025 and  = 0. That is, we compare the price paths

with and without the pricing impact of trades. We repeat the exercise four

times, i.e.,  = 4. Since × = 90 the simulated price path tracks 90 days

trading. The two price paths are shown in Figure 5.

In order to better understand the distributional properties of the model

where the agent has a significant price impact, along with the resiliency, we
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Figure 5. Effect of endogenous shocks on price path. This figure illustrates the price

paths with and without the price impact of trades for the same realization of fundamentals

shocks. The dotted line is for  = 025 with reversion to fundamentals, and the solid line

is the case for  = 0.

Table 3. Volatility and Kurtosis. This table gives the volatility and kurtosis of the

simulated densities where one has price feedback while the other does not. Both volatility

and kurtosis increase substantially with feedback.

Model Volatility Kurtosis

No feedback 1.3 3.0

Resiliency 2.2 15.4

also repeat this  = 2 000 times, to get the sample of size × = 60 000

days. These results are reported in Figure 6 and Table 3.

The contrasting price paths in Figure 5 demonstrate the considerable

impact of price feedback on the dynamic path of prices. For some of the

time, the two paths track each other closely, implying that the feedback effect

of trading does not exert much effect. However, following large price moves,

the two paths can diverge quite drastically. Such divergence is confirmation

that the price feedback effects studied in the simple tabular example above

can be shown to exert considerable influence in a more realistic dynamic

setting. Notice also from Figure 5 that even with market resiliency, the

price path with endogenous shocks can stray quite far from the fundamental

value.

The endogenous price paths leave their mark on the distribution of re-

turns, also. In particular, the shape of the density exhibit the typical “fat
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Figure 6. Return density with price feedback. This figure compares the return

density with price feedback (dotted line) and without price feedback (solid line).

tail” shape relative to the normal density. Figure 6 presents the simu-

lated density with endogenous feedback (dotted line) relative to the Gaus-

sian fundamentals-driven returns given by the solid line. We see the typical

tell-tale signs of a more sharply peaked distribution of returns with more

extreme outcomes in the tails. Table 3 confirms both the greater volatility

and the substantially higher kurtosis when the returns incorporate endoge-

nous feedback. The kurtosis goes from 3 to 15.4 as we introduce endogenous

feedback in prices, while volatility goes from 1.3 to 2.2. We see clearly the

effect of feedback. Dynamic trading strategies coupled with endogenous risk

increase overall market risk, whether measured by volatility or kurtosis.

4 Concluding Remarks

This paper has illustrated the possibility of endogenously generated extreme

outcomes when prices play the dual role of both reflecting the underlyng

fundamentals, but also driving the constraints on economic agents’ actions.

The illustration has relied on one type of constraint - the automatic response

to buy and sell that results from the delta hedging strategy. We close

the paper with some remarks on how our general approach can be usefully

employed to address a wider range of market dynamics that rest on the same

spirit of the dual nature of prices.

In Danielsson, Shin and Zigrand (2010), we show how the dual role of
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prices can amplify market risk itself and thereby drive the leverage of finan-

cial intermediaries. The depletion of bank capital and subsequent deleverag-

ing by banks has been a central theme in the discussion of the recent global

financial crisis and its impact on the real economy. Banks maintain enough

equity to meet perceived risks arising from shocks to the value of their asset

holdings. However, such realized risks should itself be considered endoge-

nous, and depend on the ability of banks to take on risky exposures. When

the banking sector suffers depletion of capital due to losses on its assets, its

capacity to take on risky exposures diminishes as the risk constraint tight-

ens. In other words, balance sheet capacity, risk constraints and market risk

premiums should all be determined simultaneously in equilibrium.

Danielsson, Shin and Zigrand (2010) show that it is possible to solve for

the equilibrium in closed form in a dynamic banking model and examine

how balance sheet capacity, volatility and risk premiums are jointly deter-

mined. One key feature of the equilibrium is that risk premiums are high

when banking sector capital is depleted, implying that projects that previ-

ously received funding from the banking sector no longer do so with depleted

capital. This is a result that is reminiscent of a “credit crunch” due to bank-

ing sector losses, and follows from the following confluence of forces. Banks

are risk neutral but their capacity to take on risky exposures is limited by

their capital cushion. As their capital is depleted, their risk constraints bind

harder, and their behavior resembles that of risk-averse investors. Indeed,

the Lagrange multiplier associated with the capital constraint enters into the

banks’ lending decisions just like a risk aversion parameter. As banks suffer

erosion of their capital, equilibrium volatility increases at the same time as

their “as if” risk aversion also increases. This combination of increasing risk

and increased risk aversion leads to a rise in the risk premium in the economy.

The expected returns to risky assets increase, and projects that previously

received funding from the banking sector no longer receives funding.

The fact that risk premiums are determined by aggregate banking sector

capital is very much in line with recent “macroprudential” thinking among

policy makers whose aim is to ensure that banking sector stress tests are in

place to ensure that the banking sector has sufficient capacity to perform its

economic role of channeling funding from savers to borrowers. This is in con-

trast to the previously “microprudential” concern with ensuring that banks

have sufficient capital to serve as a buffer against loss that protects depositors

(and hence the deposit insurance agency) from losses. Whereas micropru-

dential concerns have to do with avoiding fiscal costs (due to bank recapi-
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talization), macroprudential concerns have to do with maintaining banking

sector lending capacity.

More generally, the study of endogenous risk lies at the confluence of two

strands in the literature. One strand is the literature on crisis dynamics in

competitive equilibrium, such as Gennotte and Leland (1990), Geanakoplos

(1997, 2009) and Geanakoplos and Zame (2003). The second strand is the

corporate finance literature that draws insights on balance sheet constraints,

such as Shleifer and Vishny’s (1997) observation that margin constraints limit

the ability of arbitrageurs to exploit price differences, as well as Holmström

and Tirole’s (1998) work on debt capacities.

The results in Danielsson, Shin and Zigrand (2010) tie together these

two strands of the literature, and therefore share points of contact with a

recent literature on balance sheet constraints enter as a channel of contagion.

Kiyotaki and Moore (1997) and Gromb and Vayanos (2002) are early papers

in this spirit. Brunnermeier and Pedersen (2009) emphasize the “margin

spirals” that result where capital constraints set off amplified feedback effects.

Garleanu and Pedersen (2009) extend the CAPM by incorporating a capital

constraint to show how assets with the same fundamental risk may trade

at different prices. He and Krishnamurthy (2007) have studied a dynamic

asset pricing model with intermediaries, where the intermediaries’ capital

constraints enter into the asset pricing problem as a determinant of portfolio

capacity. Amplification through wealth effects was studied by Xiong (2001),

Kyle and Xiong (2001) who show that shocks to arbitrageur wealth can

amplify volatility when the arbitrageurs react to price changes by rebalancing

their portfolios.

These studies have focused on the financial market dynamics almost ex-

clusively, rather than on the macroeconomic issues concerned with the impact

of financial shocks on the real economy. The linking of financial dynamics

driven by such constraints and the macroeconomics literature is an important

task that would yield many important insights into business cycles.
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