
Market Resilience∗

Jon Danielsson
London School of Economics

and Systemic Risk Centre, LSE
j.danielsson@lse.ac.uk

Efstathios Panayi
University College London

and Systemic Risk Centre, LSE
efstathios.panayi.10@ucl.ac.uk

Gareth W. Peters
Heriot-Watt University

and Systemic Risk Centre, LSE
g.peters@hw.ac.uk

Jean-Pierre Zigrand
London School of Economics

and Systemic Risk Centre, LSE
j.p.zigrand@lse.ac.uk

April 27, 2018

∗We thank Thierry Foucault, Oliver Linton and Loriana Pelizzon. We also thank
the participants at the Empirical Microstructure Workshop organised by the Cambridge
- INET Institute, at the Computerised Trading at Low & High Frequency workshop at
the Newton Institute of the University of Cambridge, at the 7th International Conference
in Computational and Financial Econometrics in London, at the Forecasting Financial
Markets Conference in Marseille, at Computational Intelligence for Financial Engineering
& Economics in London, Recent Advances in Algorithmic and High Frequency Trading at

1



Market Resilience

Abstract

We propose a method to capture the notion of resilience, the dy-
namic aspect of liquidity in the limit order book, through the Thresh-
old Exceedance Duration (TED) metric that we introduce. This mea-
sures the duration of liquidity ‘droughts.’ We illustrate the explana-
tory power of a survival regression framework for the duration of
‘droughts’ in terms of observable state variables reflecting the shape
and evolution of the limit order book using Chi-X data. Finally, we
introduce a method to summarise exceedance duration information
across different thresholds, called Liquidity Resilience Profile, which
enables the comparison and the ranking of liquidity resilience.
Keywords: Liquidity Measures, Resilience, Limit Order Book, Liq-
uidity Provision, Optimal Trade Execution
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1 Introduction

Market resilience has received relatively little empirical attention compared
to other aspects of modern computer-based and high–frequency trading en-
vironments. This is problematic, since resilience is of key interest to market
participants, both as an overall characteristic of a well functioning market
and as a dynamic attribute that can change dramatically over time, not least
in times of market stress. In modern computer-based trading environments,
such as the equities markets studied in this paper, static liquidity notions on
their own are not informative any longer given the fast flickering of the order
book and the relatively minor capital and inventories held by market mak-
ers. The speed of order book replenishment has replaced capital to a large
extent, and the ease of trading is captured by the dynamic notion of liquidity
resilience. Liquidity in such markets without dedicated market maker capital
is ephemeral and dependent on algorithms to submit new limit orders, and
is therefore vulnerable to a temporary malfunctioning of algorithms.

Addressing the deficiency of empirical work on dynamic liquidity provides
the key motivation for this paper. This paper is very narrowly focused on
resilience. It does not attempt to explain the dynamics of the entire limit
order book (LOB), nor does it explain the presence or sudden disappearance
of liquidity. It only looks at resiliency in the sense of explaining how quickly
liquidity gets replenished following an illiquidity event, and it empirically
relates this duration to the current and past state of the LOB as well as
to wider market variables. This means the methods introduced herein are
simple and of direct practical use, and the approach is agnostic as to the
specific choice of a liquidity measure. One could implement any number of
the popular candidates. Applying our methodology to Chi-X LOB data, we
find that liquidity resilience is time-varying and the state of the LOB is very
informative about the level of resilience in market liquidity, as is the recent
past state of the LOB and some higher latency market variables.

Our main quantity of interest is what we term the threshold exceedance
duration (TED), that is, for how long liquidity disappears after a shock of a
certain magnitude. We explain and forecast the level of the TED through a
number of covariates summarizing the current and past state of the LOB, and
this is achieved through the development of a survival time model, similar
in structure to that used by Lo, MacKinlay and Zhang (2002). We also
relate the TED across a range of liquidity thresholds to the state of the LOB
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through the notion of liquidity resilience profiles, or LRP in short. A LRP is
a curve that tells us the best estimate of the expected TED for exceedances
of illiquidity beyond ever worse thresholds. The LRP captures a stock’s
resilience in great granularity and can be used also to compare the resilience
of multiple stocks, for instance stock A compared to stock B may exhibit
liquidity that replenishes more quickly for mild exceedances but not for large
exceedance etc.

In other words, we explain and forecast the duration of the aftermath of
liquidity shocks given the current and past states of the book, as summarised
in a small number of intuitive variates. For instance, a liquidity shock lasts
much longer when the shock is due to the pulling of limit-orders (LOs) com-
pared to the case where aggressive marketable orders walk through the book
and cause a liquidity disappearance, or when the LOB is made up of a larger
number of different LOs, when passive traders recently lost to aggressive
traders, when ask and bid volumes are larger or older, when spreads are
larger, when tick size is larger, when the time since the last exceedanceex-
ceedance is smaller, when the previous day has been quieter, when the index
has more activity, when the day is a major US macro announcement day etc.

While we could just as easily have forecasted the incidence of threshold
exceedances, in our view, the LOB is resilient when such exceedance events
are short in duration, rather than when such exceedance events are rare. This
is because their frequency pertains to market depth and the amount of new
information hitting the market more than to the resilience of the book. The
further advantage of modelling durations only is that the regression model is
extremely flexible, simple to implement and requires very few assumptions.

1.1 Modelling approach

Our specific empirical approach is based on a survival time regression mod-
els utilising a number of exogenous covariates, derived from the history of
the LOB. The specific empirical model is a distributed lag, auto–regressive
survival model, enabling us to capture the dynamic conditional expected
duration of liquidity shocks.

The number of potential covariates being extremely large, and in the
absence of theoretical work that can be tested, we based our intuition on
the limited number of academic papers, on common sense and on discussions
with practitioners involved in electronic trading and market making.

On the face of it, it would appear that forecasting TEDs in a limit order
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book ought to be very difficult since liquidity events in LOBs are complex
outcomes of myriads of decisions about aggressively taking liquidity with
market orders, providing LOs, cancelling LOs etc., done with very low la-
tency by robots whose strategies interact with each other. For instance, these
algorithms use machine learning tools, sniff each other out and interact with
buy-side VWAPs. Some algorithms are known to be trend-following at cer-
tain scales and others are known to be contrarian at various other scales. If
this is not bad enough, the algos may follow non-linear decision rules and a
master robot switches various algos on and off depending on its own rules and
depending on the High Frequency Trader’s (HFT) position and risk limits.
None of these elements are observable. And yet we find good panel fits for
the expected TEDs based on a few variates capturing the past and current
states of the limit order book as well as a number of market and economy
wide variables, presumably because the decisions taken by the market par-
ticipants and their algorithms in turn depend themselves on such variables.

This paper is not set up to model the incidence of TEDs throughout the
day (even though the frequency of TEDs in the near past is a covariate in
the model), but, rather, models the duration of such exceedances, once they
have occurred. We do this for three reasons. First, periods of higher inci-
dence are fairly predictable - the start of the trading day, when the market is
slowly feeling its way towards what the true values can be at that time, and
periods around important economic announcements. Secondly, and more im-
portantly, the model is intended to inform decision making in the millisecond
environment, where potentially hundreds of such exceedances could occur on
a daily basis. In this environment the intensity is of secondary importance
compared to the expected duration and our model can help liquidity moti-
vated market participants (or, more likely, the algorithms operated by such
participants) estimate when they could next expect sufficient liquidity to re-
turn to the LOB. Finally, the duration model is extremely simple and fast
to implement and requires very few assumptions about the data-generating
process.

1.2 Data and liquidity measures

The data consists of four months of Chi–X visible order book data, spanning
the first four months of 2012, a total of 82 trading days. Chi–X, prior to its
merger with BATS, was a pan-European multilateral trading facility (MTF).
Chi-X data has a number of advantages. Over the time of analysis, it did
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not have the sometimes complex circuit-breakers that could have disturbed
the analysis (see Brugler and Linton (2014)). For this period, it also com-
manded a large market share of the European equity trading volume, in many
cases comparable to the volumes traded on the primary markets. While our
data set contains trading instructions for all major European markets, in the
interest of tractability we focus our attention on the stocks in the CAC40
index. For each asset we were able to recreate the limit order book for we
have every limit order submission, execution and cancellation, along with
millisecond timestamps and individual order IDs. For our empirical analysis,
we consider the first 5 levels of the LOB of price quotes on the bid and ask.

A large number of liquidity or illiquidity measures have been proposed
both in the academic literature and by practitioners. While the choice of
liquidity measures is often hotly debated, in this work we are agnostic as
to the choice of liquidity measure since our interest is in the modelling of
the lifecycle of liquidity shocks, however defined. As a practical matter in
the empirical application below, we picked two frequently used measures, the
spread Mt := St = P a,1

t − P b,1
t as the difference between the best ask and

the best bid, and the Xetra Liquidity Measure (XLM). The latter captures
the market impact costs of a round–trip for a certain order size (opening and
closing a position in one point of time), whereas the spread does not capture
this depth dimension of liquidity.1

1.3 Results

We find clear diurnal patterns in the frequency of these liquidity droughts
over our sample period. An exceedance of a given liquidity threshold is more
likely to occur close to the start of the day, and the exceedance frequency gen-
erally decreases throughout the day. Conversations with market participants
have helped us interpret this phenomenon with regard to market activity.
Market makers may be more uncertain about the price of assets after the
opening auction, and are generally unwilling to offer competitive spreads,
but also change their quotes frequently. This eventuates in a larger number
of liquidity threshold exceedances, compared to later in the day, when prices
and trends have been established. We find a second cluster of exceedances

1Mt := XLMt(R) =
∑k

i=1 TV a,i
t (Pa,i

t −Pm
t )+(R−

∑k
i=1 TV a,i

t )(Pa,k+1
t −Pm

t )

R

+
∑k

i=1 TV b,i
t (Pm

t −P b,i
t )+(R−

∑k
i=1 TV b,i

t )(Pm
t −P b,k+1

t )

R where k = max(n :
∑n

i=1 TV
a,i
t (P a,i

t −
Pm
t ) < R) and TV b,i

t = 1n · V b,i
t is the total volume at level i and Pm

t is the mid-price.

5



at 13:30 UK time, 8:30 EST coinciding with the release of economics reports
in the United States, eg weekly jobless claims, retail sales, core PPI, housing
starts, non-farm payrolls.

When it comes to explaining the variation in the TED, with typical R2

around 20%, we find that the explanatory power of the model is good for
both the durations of exceedances above median liquidity levels, as well as
for higher threshold levels. The explanatory power is slightly higher when
considering the spread as the liquidity measure of choice, rather than the
XLM, but both produce very satisfactory results.

Most of the explanatory variables are very highly significant at all thresh-
olds.

If one believes that market liquidity, including the bid-ask (BA) spread,
is set in equilibrium to a meaningful extent by competing passive liquidity
providers, resilience as defined here measures the speed by which an ex-
ceedance beyond a given c attracts new competitive LOs that re-establish
the profit-maximising spreads at this level c. Liquidity resilience is therefore
a function of c. If the level c is high and compensates more than commen-
surately for the level of informational asymmetry and other risk factors, the
TED will be short, and the regressions inform us on some of the factors de-
termining how short. If the chosen level c does not adequately compensate
given the state of the LOB, then the TED will be long and may require
either a period with exceptionally low informational asymmetries or some
non-informational happenstance that leads algorithms to quote LOs at such
low c (including hedging needs, liquidity related trades, algorithms following
trading signals not related to market making, algorithmic malfunctioning,
spillovers from other trading venues, or non-market makers using LOs in-
stead of marketable orders so as not to pay the spread etc.).

Our baseline explanations in this summary therefore consider informa-
tional factors for illiquidity exceedance durations, to which a disparate set
of non-informational and market-microstructure explanations will be added.
Information tends to come in clusters, and we find that lagged durations
are significant in explaining current durations and that the TED process
is persistent and clustering, suffering from bursts of informational clusters.
We find that liquidity supplying algorithms are not purely reactive, they try
to tease out informational events before they fully hit the LOB and adjust
spreads accordingly. Consistent with the idea that market makers pull LOs in
anticipation of informational events, we show that TEDs are much longer if
the exceedances are due to pulled LOs than to aggressive marketable orders.
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We also find that exceedances that get resolved in a way that the mid-price
at the end is the same as the mid-price prior to the exceedance, which we
deem “non-informational,” get resolved more quickly than exceedances dur-
ing which the mid-price moves. Similarly, TEDs tend to be longer following
episodes where LO suppliers in the aggregate (we don’t have individual trader
IDs) lose more money over a 10 seconds interval preceding the exceedance.

Informational factors are furthermore strengthened through market-wide
variates that directly speak to informational richness. For instance, moments
with more overall CAC40 market activity (including LO submissions, cancel-
lations and amendments) are followed by longer TEDs for individual stocks.
Furthermore, days with US macro announcements lead to significantly longer
TEDs on the CAC40 market. Also, larger exceedances - reflecting bigger
pieces of news - take longer to heal.

Consistent with the informational narrative of news coming in bursts fol-
lowed by periods of relative uninformativeness, we find that if the previous
day has seen many exceedances or has been an announcement day, the fol-
lowing day brings about smaller expected TEDs.

The remainder of this paper is organised as follows: In Section 2, we
discuss the notions of LOB liquidity and we provide an overview of resilience
related work. In Section 3, we provide a formal definition of our resilience
measure and detail the statistical framework we adopt. In Section 5, we
discuss features of the dataset used in this paper and in Section 6, we present
a detailed set of results and assess the model fit. Section 8 concludes.

2 Related work

2.1 Liquidity resilience

In the context of a financial market, we can consider resilience to be a quality
of the market that allows various qualities to recover after a shock. The sem-
inal paper of Kyle (1985) refers to resilience as ‘the speed with which prices
recover from a random, uninformative shock’. This is similar to the interpre-
tation of Obizhaeva and Wang (2012), who suggest that in a resilient market
there is a swift convergence of the price of an asset to a new steady state,
after a market order. Garbade and Garbade (1982) describe a resilient mar-
ket as one in which ‘new orders pour in promptly in response to a temporary
order imbalance’, whereas Harris (2002) suggests that in such a market, ‘un-
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informed traders cannot change prices substantially’. These interpretations
of resilient markets differ somewhat, in that the two former definitions are
related to price evolution, while the latter two concern order replenishment.

We now focus on the resilience of liquidity, which itself does not have a
universally accepted definition, but is only loosely understood as being re-
lated to the return to some former level of either the price (Kyle, 1985), the
volume (Garbade and Garbade, 1982) or liquidity metric of interest (Fou-
cault, Kadan and Kandel, 2005). The theoretical models of Kyle (1985) and
Glosten and Milgrom (1985) suggest that liquidity fluctuations may arise as a
result of information asymmetries. Dong, Kempf and Yadav (2007) note that
resilience has received much less attention compared to other aspects of liq-
uidity, citing the extensive research in depth and tightness. There have still,
however, been a number of attempts to define and model resilience, including
by Foucault et al. (2005). They analyze in a dynamic equilibrium model the
determinants of liquidity resilience, which they define as the number of or-
ders required for the spread to recover to a competitive level. Waiting costs
are the main determinant of resilience, based on the intuition of Demsetz
(1968). They identify three liquidity resilience regimes for the LOB, which
they relate to the proportion of patient and impatient traders (traders that
predominantly submit limit or market orders, respectively). They find that
resilience increases with the proportion of patient traders, while resilience is
reduced by a reduction in the tick size.

The resilience model of Large (2007) uses a parametric model which views
orders and cancellations as a mutually-exciting ten-variate Hawkes point pro-
cess, which formalises resilience in terms of a time-frame and probability of
order book replenishment. Kempf, Mayston and Yadav (2007) use a mean
reversion model of liquidity, where resilience is proportional to the intensity
of the mean reversion. They find that resilience is not significantly corre-
lated with either the spread or the depth of the LOB, highlighting the need
for separate treatment. Finally, similar to this paper, Gomber, Schweickert
and Theissen (2011) employ the XLM measure to quantify the resilience of
liquidity, which they define as the difference in the XLM after large transac-
tions. They find that the liquidity measure generally returns to close to its
pre-trade level within 2-3 minutes of a large transaction. Notions of resilience
have been incorporated in the dynamic LOB model of Roşu (2009).

While these previous attempts to capture liquidity resilience have exhib-
ited the importance of the concept, they have generally tied the definitions to
particular measures of liquidity, like the inside spread (Foucault et al., 2005),
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or the volume at the top of the LOB (Large, 2007). Our first contribution is a
more general definition of resilience as the duration of deviations from a par-
ticular liquidity threshold level. Different liquidity measures and threshold
levels of liquidity are appropriate for different applications (for example, an
algorithmic execution setting would have different ‘trigger’ level to a setting
where liquidity is monitored for systemic risk purposes). Our definition can
accommodate any liquidity measure and threshold level of interest.

In addition, the aforementioned papers have generally tried to model the
concept through theoretical processes. Several authors have studied resilience
empirically, such as Degryse, De Jong, Van Ravenswaaij and Wuyts (2005);
Large (2007). Degryse et al. (2005) present an event study on the Paris
Bourse, estimating the impact of aggressive orders through a non-parametric
approach. Coppejans, Domowitz and Madhavan (2004) use a vector autore-
gressive model to estimate whether liquidity shocks dissipate swiftly. Large
(2007) studies the intensity of order replenishment after liquidity has been
consumed on the LSE using a multivariate Hawkes process. Compared to
these papers, our use of a regression model with covariates coming from the
structure of the LOB allows us to assess the contribution of each covariate
to the explanatory power of the model. It also gives us the ability to model
different scenarios that had not previously occurred in the dataset, by modi-
fying the covariate values. We also assess the predictive power of our model,
and explain how such a forecasting model could then be readily incorporated
into an execution model.

Our work complements the literature in determining optimal order sizes of
e.g. Bertsimas and Lo (1998) and Obizhaeva and Wang (2012), as it provides
an estimated time between subsequent tranches, given a certain state of the
LOB. We show that resilience is neither infinite, as assumed in the former,
nor constant throughout the trading day, as in the latter, but rather relates
to the level of structural variables of the LOB. While Alfonsi, Fruth and
Schied (2010) has considered the exponential decay of the impact of market
orders on LOB volume and the spread, we show that resilience is dependent
on the state of the LOB, and that incorporating LOB variables can improve
the explanatory power of the model.

Our notion of liquidity resilience therefore extends the standard notion
of resilience in three key dimensions, first by making it time-varying and
showing that a substantial part of its variation can be explained by the
structure of the LOB; second by explicitly relating it to certain liquidity
levels of interest, and thirdly, by modelling and forecasting the time required
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for a market to recover following a liquidity shock. We show that the state of
the LOB is an important determinant of the level of liquidity resilience, while
previous work by Kyle (1985) and Foucault et al. (2005) only considered
exogenous factors to be relevant (informational asymmetries and waiting
costs, respectively).

This approach enables us to provide a comparison of resilience, for ex-
ample, in what could be considered to be ‘normal’ and ‘stressed’ scenarios,
enabling us to classify assets according to whether they show similar be-
haviour in terms of these exceedances in particular market conditions, and
finally, study the behaviour of resilience across time.

We also contribute to the empirical understanding of resilience, as our
methodology enables us to identify the market conditions that are most likely
to result in an environment of slow liquidity replenishment. Developing such
an understanding is key to implementing measures to reduce the duration
and/or severity of liquidity droughts, as these droughts have been shown to
contribute to the amplification of small shocks into full-blown financial crises
Brunnermeier (2008). At the same time, by forecasting the return of liquidity
to the markets following an event, our methods are also of great interest to
practitioners involved in optimal order execution.

2.2 Survival analysis

Survival analysis models the time until a particular event (or events) will
occur, such as the failure of some component or the death of an individual.
It has a unique advantage in that it can incorporate censored observations,
which occur when one cannot obtain the true value of an observation because
the terminating event has not occurred inside the observation window. It has
been used frequently in medical studies, for example, in modelling the time
to a single outcome, such as the lifetime after a kidney transplant (Lambert,
Collett, Kimber and Johnson, 2004), or the time to one of a range of out-
comes, such the time to response to treatment or the time to recurrence in
cancer patients (Bradburn, Clark, Love and Altman, 2003).

In the context of the LOB, survival regression frameworks have mainly
been employed to explain the variation in the lifetimes of limit orders. Al-
Suhaibani and Kryzanowski (2000) used such a framework for the Saudi
Stock Market, under an assumption of a Weibull specification for the time to
execution of limit orders, where cancelled or expired orders were considered
to be censored. A similar formulation was used by Cho and Nelling (2000)
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for the New York Stock Exchange. Lo et al. (2002) used a more general
formulation with a Generalised Gamma Distribution, similar to that used in
this paper, particularly regarding the transformation of the structure of the
LOB to a set of summary statistics.

3 A model of liquidity resilience

Within the extensive empirical market microstructure literature on liquidity,
the study of market resilience has received relatively little attention. In his-
torical LOB trading environments where trading was done by human beings,
resilience might have been less of a concern than in the current computer–
based and high–frequency trading environments, because algorithms might
react differently to anomalies than humans and because algorithms can be
optimised to trade quickly and keep risk parameters and capital usage to
tight bounds. Since algorithms and resilience are more important than be-
fore, it makes studying resilience more important and that provides, the main
objective of our work.

We extend existing work that mostly assumes that liquidity is a static
concept (see e.g. Bertsimas and Lo, 1998; Obizhaeva and Wang, 2012; Al-
fonsi et al., 2010), arguing that resilience varies throughout the trading day
in partially predictable way, based on the state of the LOB. In this, our work
resembles the time–dependent resilience used in the execution model of Al-
fonsi, Fruth and Schied (2008), but we further relate resilience to the level
of structural variables of the LOB.

We start by introducing a new notion of liquidity resilience that we term
threshold exceedance duration (TED), which is based on the duration of liq-
uidity shocks exceeding a threshold — threshold exceedance. In this, our
main interest is on the duration of threshold exceedances rather than the
incidence of threshold exceedance. The reason is that in our view, the LOB
is resilient when such exceedance events are short in duration, rather than
when such exceedance events are rare, because their frequency pertains more
to market depth and the amount of new information hitting the market,
rather than to the resilience of the book and the quality of liquidity provi-
sion. This is in contrast with intensity models, designed to answer different
questions, such as the ones proposed by Large (2007) and Toke (2011), where
they require a description of the behavior of the entire stock price process.

The literature has identified a number of different notions of market liq-
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uidity, all with their particular pros and cons (see for instance the textbook
by Amihud, Mendelson and Pedersen (2013) or Foucault, Pagano and Röell
(2013)), and our TED framework allows the inclusion of most arbitrary liq-
uidity notions.

Each liquidity threshold exceedance event has a lifetime, the TED, which
we estimate and forecast with a statistical survival model. The model incor-
porates a regression component, which serves to capture the state of the LOB
at the point of exceedance. One of the interesting applications of the model
is the ability to forecast extreme TEDs, which can be thought of as extended
periods of relative illiquidity. While the survival regression framework can
be used to estimate expected TEDs over a particular threshold, a quantile
regression framework can additionally produce upper and lower probabilistic
bounds on the TED. These can be thought of as a confidence interval around
the expected TED, and will be a analyzed in a follow-on paper.

The TED model is not specific to any particular threshold level of liq-
uidity. Indeed, some end–users may be concerned with very high–frequency
liquidity behaviour and hence very low thresholds, others are more interested
in the recovery of liquidity after larger and less frequent events, for example
fund managers placing large orders, while a regulator might only be inter-
ested in extreme disruptions to liquidity supply, and hence exceedances over
a very large threshold. For this reason, we estimate the model across a range
of thresholds, terming the joint relationship between thresholds and the TED
as liquidity resilience profiles, or LRPs.

One benefit of summarizing resilience behaviour in the form of LRPs is
that one can then directly compare liquidity resilience across assets. In this
way, one can potentially group assets according to their similarity in the
speed of return to high levels of liquidity after a shock, which may be an
indication of the presence of high-frequency market makers in these assets.

3.1 Threshold exceedance duration — TED

Our starting point is the TED, which is formally defined by:

Definition 1. The threshold exceedance duration (TED) is the length of time
between the point at which a liquidity measure,Mt, deviates from a threshold
liquidity level, c, (in the direction of less liquidity), and the point at which it
returns to at least that level again. The random starting time and duration
(in ms) of the TED of the ith upcrossing in a given trading day are denoted
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by Ti and τi respectively, where i refers to the ith exceedance. If we want to
make the relationship between the TED and the threshold explicit, we write
τi(cj).

In a LOB where liquidity is resilient at particular threshold level, we
then expect TED to be low with the market quickly returning to good levels
of liquidity after a shock. The unconditional average of the TED therefore
represents the typical level of liquidity resilience for an asset while the TED at
any given time captures the particular level of resilience given overall market
conditions.

Figure 1. Threshold exceedance duration (TED)
The figure shows how a particular liquidity measure, Mt, evolves
over time for two exceedance thresholds, with chigh more ex-
treme than clow, and the duration time, τ2(chigh) and τ1(clow).
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Figure 1 shows a hypothetical market whereby Mt fluctuates over time,
exceeding a low threshold, clow = 3 at time 1, and a higher threshold, chigh = 6
at time 8. In these cases, the first TED for the lower threshold is τ1 = 3
and the second is τ1 = 4, where the exceedances happen at times T1 = 1 and
T2 = 8, respectively.

More formally, an exceedance (or birth) occurs at time Ti, when the
liquidity measureMt deviates from a threshold, cj, in the direction of lower
liquidity for the ith time. The exceedance ends (or dies) at time Ti+τi, when
liquidity metric returns below the threshold level. Mathematically, we can
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define both the TED and the exceedance time as:

τi(cj) = inf {τ : MTi+τ ≤ cj, τ > 0} (1)

Ti(cj) := inf {t : Mt > cj, t > Ti−1(cj) + τi−1(cj), t > T0} (2)

3.2 Liquidity thresholds

Our empirical study is based on the time a liquidity measure, Mt, spends
exceeding a particular liquidity threshold. We denote the threshold by cj
where j refers to the threshold level. We can define these thresholds in
different, but interchangeable ways. In particular, we can either define them
based on the absolute level of a liquidity level (for example, 3 ticks in the
case of the spread) or in a relative way, where the threshold is obtained from
the frequency distribution of the values the liquidity measure can take (for
example, the median daily spread). There is no theoretical reason to pick
either approach and since these, of course, uniquely map to each other, it is
best to let empirical considerations determine the choice.

We opted for the relative approach, primarily because that enables us to
capture the entire set of possible thresholds efficiently whilst absolute thresh-
olds might span the actual liquidity of the asset under question inefficiently
in terms of the number of unique values one needs to consider. Furthermore,
the choice of relative liquidity levels facilitates the comparison of liquidity
resilience profiles across assets, by reducing the range of liquidity values for
different assets to a common set of thresholds.

In practice, we start by empirical observations of the chosen liquidity
measure, Mt, on a particular day and use percentiles of its empirical distri-
bution as liquidity thresholds. Therefore, for example, c.50 := c.50(day d) and
c.90 := c.90(day d) denote the constant 50th and 90th percentiles respectively
of the exceedance durations on the given day d. Recomputing the quantiles
each day allows us to interpret the thresholds in a coherent way across the
sample. For instance, when computing the expected TED at a moment in
time beyond c.90 we get an estimate of an expected duration that we know is
rather serious. If we kept the quantile constant in absolute terms, then the
conditional expected TED at the fixed c.90 at that moment may be mean-
ingless and misleading as it would not express a large but not catastrophic
exceedance on the day if markets find themselves in a much more eventful or
very quiet day.
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3.3 Survival model

A natural way to estimate the conditional expectation of the TED in (1) is
by a survival regression where the probability of TED exceeding a certain
duration is forecast by a survival model that uses a set of covariates as ex-
ogenous explanatory variables. Some of the covariates are derived from the
state of the LOB. This section has as a sole purpose to motivate the linear
survival regressions we run of the log duration of exceedances on explanatory
variates and the convenient interpretation of the regression coefficients.

Survival regressions have a number of advantages. They explain the du-
ration of exceedances in a tractable fashion since exceedances are modelled
directly, given an exceedance, as opposed to the outcome of a larger model.
They are designed to answer this precise question, and do not also attempt
to model the entire data generating process (e.g. general intensity based
specifications), including the frequency of exceedances. This makes the ap-
proach useful also in practice. Say an agency broker tries to slice and dice an
order and optimises the feeding of the orders, then a simple regression-based
approach allows the broker to better time its orders.

Several authors have previously adapted survival models for modelling
the lifetimes of limit orders, for example Lo et al. (2002), and we adopt some
of the techniques, particularly regarding the transformation of the structure
of the LOB to a set of summary statistics.

In a nutshell, survival regression modelling aims to explain the variation
in a dependent observed positive random variable (or in our case multiple
random variables) as a function of explanatory covariates. We seek to model
the durations τi(cj) and their survival function is

S(τ ;β) := 1− F (τ ;β) = Pr (τi(cj) ≥ τ)

Here β is a vector of coefficients in the regression model, which param-
eterise the survival distribution. Two most commonly used classes of sur-
vival models are proportional hazards models and the accelerated failure time
(AFT) models. AFT models can be viewed as those representable with a lo-
cation coefficient that is log-linear in the chosen variates and whose survival
function between populations satisfy the relationship 3 below. We use the
latter approach in this paper, as AFT models have a number of relevant
advantages:

• The log-linear formulation of such models (since variates act linearly on
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the log of the failure time) emphasizes that the roles of the regression
parameters and dispersion parameters are clearly separated.

• The regression parameters in an AFT model are also robust towards
neglected covariates.

The AFT model has the distinctive feature that the model covariates
have a multiplicative influence on the survival time. A unit change in, say,
covariate x(k) to x(k) + 1 produces generic survival times ln τTED

1 and ln τTED
2

respectively that will satisfy the following relationship between the two sur-
vival functions S1(τ) and S2(τ):

S1(τ) := Pr (τ1 ≥ τ) = S2(eβkτ) := Pr
(
τ2 ≥ eβkτ

)
(3)

The conditional means will for instance be related by µ2 = eβkµ1 and
the quantiles at any level p ∈ [0, 1] will be related by q2−q1

q1
= eβk − 1 ≈ βk.

These characteristics will allow us to interpret the regression coefficients with
ease. The AFT regression framework thus relates the exceedance times at
each threshold on a combination of common covariates, through a rescaling
of time.

Within this modelling approach we can choose the very flexible three
parameter distributional family that is the Generalised Gamma distribution
(hereafter g.g.d.). We assume that the TED random variables are condition-
ally independent, given the LOB covariates:

τi(cj)
i.i.d∼ F (τ ; k, a, b) =

γ
(
k,
(
τ
a

)b)
Γ (k)

with the incomplete gamma function defined as: γ(x, y) =
∫ y

0
tx−1e−tdt. The

g.g.d. family includes the exponential model (b = k = 1), the Weibull
distribution (with k = 1), the Gamma distribution (with b = 1) and the
Lognormal model as a limiting case (as k → ∞). The resulting density for
the generalised gamma distribution is analytic and given by

fτ (τ ; k, a, b) =
b

Γ(k)

τ bk−1

abk
exp

(
−
(τ
a

)b)
with parameter ranges k > 0, a > 0 and b > 0 and a support of τ ∈ (0,∞).
One can write the survival function explicitly in closed form.
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Now relate this statistical model assumption to a set of explanatory vari-
ables (covariates) from lagged values of the LOB. Under the AFT framework,
the regression structure involves constant and nonstochastic terms k and b as
well as the following loglinear form for the time-varying location coefficient
a(xt):

a(xt) = exp

(
β′0 +

p∑
s=1

x
(s)
t βs

)
. (4)

Each of the covariates is a transform from the LOB (current or past) for
which the illiquidity measure is observed or from market conditions more
broadly (current or present).2 Under this AFT model with this location re-
gression structure, we observe that the conditional mean of the survival times
is also related directly to this linear structure where for the i-th exceedance
of the threshold, we have (see Lo et. al. (2002)):

E [τi(cj)|xTi ] = a(xTi)

(
1

k

) 1
b Γ
(
k + 1

b

)
Γ (k)

Next we relate this statistical model assumption to a set of explanatory
variables (covariates) from state of the LOB. To achieve this, it is beneficial
to work on the log scale with ln(τ), i.e. with the log-generalized gamma
distribution (hereafter l.g.g.d.): this parameterisation improves identifiability
and estimation of parameters. A discussion on this point is provided in
significant detail in Lawless (1980). It follows that the Log Weibull is extreme
value distributed, log lognormal is normal, etc.

One great advantage of the current approach is that for elliptical dis-
tributions the conditional expectations function for log-durations is in fact
linear

E [ln τi(cj)|xTi ] = β0 +

p∑
s=1

x
(s)
Ti
βs

and not merely a linear approximation to the true CEF that we are seeking.
While we have run the regressions with a variety of distributions for the
error terms,3 for the CEF little is gained and some simplicity lost by using

2We note that we also considered models with interactions between the covariates, but
interaction terms were not found to be significant in the majority of our models.

3We did estimate a version of the general AFT model allowing for such innovations.
However, the estimated gamma coefficients did suggest that the innovation distribution
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distributions other than the normal, and the results in this paper, pertaining
mainly to conditional expectations and not to tail risk properties and the
like, are all derived in the Gaussian case.

With an elliptical distribution such as the normal, conditional expectation
functions of log-duration are affine and the estimated AFT model boils down
to affine regressions in log-durations (see Lawless (1980))4:

ln(τ
(`)
i ) = β0 +

N∑
s=1

x
(`,s)

T
(`)
i

βs + ε
(`)

T
(`)
i

, ε
(`)

T
(`)
i

∼ N(0, σ2) (5)

where we denoted securities by ` and the N covariates (including fixed effects

dummies) by (x
(`,1)

T
(`)
i

, . . . , x
(`,N)

T
(`)
i

).

We assume that for any threshold cj that we choose, the liquidity measure
will eventually return to this level after an exceedance at time Ti. This
assumption is necessary, in order to ensure that the density f for the TED
observations normalizes to unity on its support. We impose an upper bound
τi ≤ TD−Ti, where TD denotes the end of the observation window. If a return
of the liquidity measureMt to the threshold c has not occurred by time TD,
we consider the observation censored. Censored observations are accounted
for separately in the model estimation. Each τi therefore has a potential
maximum observation time TD − Ti, i.e. the time remaining until the end
of the observation period TD (1 minute prior to the end of the trading day,
after which the spread will not be calculated). These maximum observation
times are thus known at the time of birth.

4 Covariates

The survival model is estimated with a number of conditionally exogenous
covariates that are obtained from four sources. First we use variates that
capture the salient features of the current state of the LOB. Second we use

was at least approximately normal and certainly symmetric. By estimating the log-
duration model with normal innovations, the model residuals were by and large sym-
metrically distributed, 99% empirical quantiles the skewness in [-0.46,0.74]), with the 99%
empirical quantiles of the residual kurtosis in [1.8, 3.7]. For this reason, we opted to use
normal innovations in the estimation.

4In much of the applied work, AFT models are defined by the log-linearity of duration
in the variates plus the noise term, even if the noise term is not elliptical.
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variates that summarise the state of the book in the recent past, allowing
for autoregressive components. Third, we look at the event-specific variables
obtaining during the exceedance, and lastly, we use variates that are not
LOB related and that represent the wider market conditions, such as overall
market activity, macro announcements etc.

The particular model requires us to specify the distribution of the random
shock, the conditional mean structure of the TED and the variance equation.
We assume the TED random variables are conditionally independent, given
the LOB covariates.

In the following, a ‘level’ of the LOB is defined as one in which there is at
least 1 resting limit order. Thus the first 5 levels of the bid are the 5 levels
closest to the quote mid-point, where there is available volume for trading.

Covariates pertaining to the shape of the LOB Model (sampled at Ti just
after exceedance):

Ask is the total number of different ask orders (not the amount of stock bid
or offered) in the first 5 levels of the LOB at time t, obtained according
to
∑5

i=1

∣∣V a,i
t

∣∣ (where |·| is the number of orders at a particular level)

Bid is the total number of bids in the first 5 levels of the LOB at time t is
obtained according to

∑5
i=1

∣∣∣V b,i
t

∣∣∣
askVolume is the total ask volume (in 1000s of shares) in the first 5 levels

of the LOB at time t, obtained according to
∑5

i=1 TV
a,i
t

bidVolume is the total bid volume (in 1000s of shares) in the first 5 levels
of the LOB at time t, obtained according to

∑5
i=1 TV

b,i
t

bidModified is the number of bids in the first 5 levels of the LOB that had
received price or size revisions (and were thus cancelled and resubmitted
with the same order ID)

askModified is the number of asks in the first 5 levels of the LOB that had
received price or size revisions

bidAge is the average age (in m) of bids in the first 5 levels at time t

askAge is the average age (in m) of asks in the first 5 levels at time t

spreads is the instantaneous value of the spread at the point at which the
i-th exceedance occurs, which is given by P a,1

t − P
b,1
t
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Ticksize is either 0.1, 0.5 or 1 cent and measures the tick size regime in
which a stock finds itself at the moment of exceedance

The following are variates capturing the local dynamics of the LOB:

lask, lbid For the previously defined covariates, we also include exponen-
tially weighted lagged versions. For example, in the case of the x

(s)
t

covariate, the respective lagged covariate value is then given by:

z
(s)
t =

d∑
n=1

wnx
(s)
t−n∆ (6)

where for a time t, we consider w = 0.75 is the weighting factor, d = 5
is the number of lagged values we consider and ∆ = 1s is the interval
between the lagged values. These covariates are hereafter denoted with
the ‘l’ prefix, e.g. lask=

∑d
n=1 w

naskT−n∆.

prevexceed is the number of previous TED observations in the interval
[t− δ, t], with δ = 1s.

timelast is the time since the last exceedance (in m).

log.duration, ten layers of past ln(TED) in ms, ` = 1, . . . , 10.

The event specific variates are:

MObuy is a dummy variable indicating if the exceedance occurred as a
result of a marketable order to buy.

MOsell is a dummy variable indicating if the exceedance occurred as a result
of a marketable order to sell.

cancelbuy is a dummy variable indicating if the exceedance occurred as a
result of a cancelled buy limit order. There is no cancelsell variable
since the sum of mobuy, mosell, cancelbuy and cancelsell would be
colinear with the constant.

samemidspread is 1 if
MTi+τi =MTi−

and
Pmid
Ti+τi

= Pmid
Ti−
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and 0 otherwise, i.e. it’s 1 if the LOB returns to the same mid and
spread (and thus the spread could not have tightened due to the unex-
ecuted portion of an order).

One use of this is in differentiating between exceedances of the following
sort, that one may perhaps label “informational5”

∗ ∗
∗ ∗
∗ ∗

Ti Ti + τi

and between uninformed imbalance exceedances

∗
∗ ∗
∗ ∗ ∗

Ti Ti + τi

This variate is not adapted to the information filtration of the agents.
Section 6.3.1 will provide a more detailed explanation.

profLO captures the few last (undiscounted) profits of the passive traders
when trading against market orders. The intuition is that if passive
traders have over the last minutes lost out to aggressive traders, they
may be less willing to offer tight liquidity quickly. We use the method-
ology of Bessembinder (2003). Define ∆1 > ∆2 ≥ 0, and I(t) := {s ∈

[t − ∆1, t − ∆2] : Ds 6= 0} and Ds =


0 if no LO gets hit at s

1 if the LO supplier sold

−1 if LO supplier bought

Then profLO:=
∑

i∈I(t)Di×{(average price achieved for that MO i)−
Mt} × (# shares executed by that MO i).

If the metric profLO� 0 that means that on average a series of mar-
ket orders came in and the sign of Di on average was the opposite of

5Here a buy MO comes in and lifts the ask, or the LO ask is cancelled and replaced by
a higher one, and subsequently the bid is cancelled and placed back higher up to close the
spread. The mid is moving up.
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{(average price achieved for that MO i)−Mt}. So the buy orders have
been on average executed at ask prices below the final mid at the time
of the exceedance and sell orders at bid prices above the final mid. The
mid Mt at the exceedance time may be argued to reflect the informa-
tion at that stage better and proxies for the underlying true value at
time t−∆1. In other words, the limit oder submitters on average sold
at a loss to market order traders over the last ∆1 = 10s.

Other market related (and not related to the current LOB) variates are:

lag.Return is the return for that asset the previous day.

indexact is the activity in the entire CAC40 index in the previous second
(in 1000s of limit order submissions, amendments, cancellations, execu-
tions), comprising the total number of events (limit orders, executions,
cancellations). This also capture the sense of “volatility” (which if de-
fined through execution prices would not be insightful at such high
frequency).

lag.low.volume = 1 if volume across all French stocks on all markets (not
only on Chi-X, gathered via Bloomberg) was low, (≤ 15%) else 1

lag.high.volume = 1 if this volume was high, (≥ 85%) else 1

Announcement = 1 for a stock if there is a US macro announcement today
at 13:30 London time (8:30 ET), such as weekly jobless claims, retail
sales, core PPI, housing starts and non-farm payrolls.

lag.Announcement = 1 if there was such an announcement yesterday

num.lag.TED is the number of TEDs yesterday at yesterday’s c corre-
sponding to the same quantile

5 Data

The data is provided by Chi–X, which (prior to its merger with BATS) was
a pan–European multilateral trading facility (MTF) and commanded a large
market share of the trading volumes for the assets traded on it. Indicatively,
for the week starting the 2nd of January 2012, it had 25.5% of the CAC40
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trading volume, 26.9% for the stocks on the DAX index and 33.4% of the
FTSE1006 Chi–X did not operate with circuit breakers during the trading
sample, which makes Chi–X data particularly clean for the purposes of our
study given the number of complex circuit–breaker mechanisms operated by
other exchanges (see e.g. Brugler and Linton, 2014).

The Chi–X trading platform enables market participants to post limit
orders, with a specified price and size, or several types of pegged orders,
which automatically adjust their prices according to market conditions. It
also allows the posting of iceberg orders, only a portion of which is displayed.
For every order, there is an option to specify a ‘time in force’ after which if
an order is still resting in the LOB, it will be cancelled.

The exchange has both a visible and a hidden order book and orders
are routed to each book according to the type and size of the order: Limit
orders, pegged orders and part of each iceberg order is displayed in the visible
book; orders meeting MiFID large in scale requirements are routed to the
visible book, but remain non-displayed; orders in the hidden order book are
executed at the mid–price.

We use an 82 day trading sample (January 2nd to April 27, 2012) of
all limit order submissions, executions and cancellations in the visible order
book, focusing our attention CAC40 stocks. Both limit order submissions
and executions in our dataset may be the result of pegged, limit or iceberg
orders, however, the data only indicates the resulting submission of the limit
order. In addition, a cancellation may be automatic (as a result of a time in
force option), or as a result of a manual cancellation request, but this is not
indicated in the data. We do not attempt to infer this information here, and
in any case we have sufficient information to rebuild the LOB without it.

The TED observations considered are those occurring between 08:01 and
16:29 London time daily, to avoid market opening and closing effects. We
also note that while the continuous trading hours on Chi–X are not neces-
sarily the same as those in the national exchanges where the assets trade,
for these French stocks the opening hours coincide. Hence, we do not have
any additional considerations that would result from the sudden submission
or withdrawal of liquidity from the primary exchange.

We also investigated whether liquidity resilience is affected by various
economic factors such as economic announcements and recent market activ-
ity.

6http://www.liquidmetrix.com/LiquidMetrix/Battlemap.
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5.1 Diurnal patterns

It is well documented that there are strong diurnal patterns in limit or-
der trading environments, for example on volume and even volatility. The
presence or absence of diurnal patterns for the TED is relevant to how one
constructs the empirical model.

As an example, consider Crédit Agricole in Figure 2. All stocks we con-
sidered exhibited such a pattern.

The figure shows that there are clear diurnal patterns in the frequency
of these liquidity droughts over our sample period. A liquidity drought is
more likely to occur close to the start of the day, and we note a second
concentration of exceedances around 13:30 London time, or 08:30 ET. While
the concentration of liquidity droughts in the morning may be due to well
documented market open effects (see, e.g. Biais, Hillion and Spatt (1995)),
this does not explain the very distinct mid–day clustering.

Figure 3 shows the aggregate proportion of time that a threshold was ex-
ceeded in each half hour interval of the trading day, for a range of thresholds.
In other words, it shows the relative illiquidity ratio over the day for three
threshold levels, corresponding to exceedances over the median liquidity level
(c.50), as well as the 90th and 99th thresholds (c.90 and c.99, respectively. For
the most extreme threshold level, c.99, only the 11 most liquid stocks provided
enough observations to calculate the aggregate time.

The more extreme the threshold level, the more extreme the diurnal pat-
tern.

6 Regression Results and Discussion

While the TED approach is agnostic as to the choice of liquidity measure, for
presentational purposes we need to focus on only a selection, and we opted
to focus our attention for most parts on the spread, with some results for
the XLM (Xetra Liquidity Measure). It would be straightforward to consider
other liquidity measures.

6.1 Model estimation choice

We estimate the duration model as a panel. We have performed the regres-
sions both with fixed effects and without. The fixed effects we have considered
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Figure 2. Crédit Agricole c.90 TEDs
The duration of time during all the trading days in our dataset that the inside
spread M of Crédit Agricole (stock symbol ACAp) is above the 9th decile thresh-
old. Time is on the x-axis starting at 8:01 am in the morning and ending at 16:29.
Each day corresponds to one row on the y-axis. Rows are coloured red if there is
a US economic announcement at 13:30 London time (08:30 ET), and blue otherwise.
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are a stock specific dummies, day dummies as well as time-bucket-of-the-day
dummies. Neither the estimated coefficients of the explanatory variables nor
adjusted R2s are much affected when adding or omitting the fixed effects.
Stock fixed effects are mostly positive and statistically significant at the 0.1%
level. Many daily dummies - though by no means all - are significant and
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Figure 3. Intra-day threshold exceedances
The fraction of time during every half hour interval of the trading day that the spread
exceeds thresholds c.50, c.90 and c.99.
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the signs of their coefficients are varying with the days. In the table below
we exhibit the final fixed effects that capture the diurnal patterns where we
split the day into 8 buckets. As expected, the values are positive and largest
for the buckets at the start of the day, with a slight upwards hump for the
bucket that captures the US announcements.

The quantile-based thresholds c are re-estimated every day for each stock.
Adjusted R2 are inverse U-shaped in c when c moves from c.10 to c.99,

with R2s moving from .170 to .205 for intermediate c and down to 0.187 for
c.99.

Notice that the interpretations for small quantiles and for large quantiles
are different. For instance, the exceedance duration beyond c.99 signifies the
duration of illiquidity being very severe before reverting below this level c.99.
We expect that duration to be small since limit order suppliers are expected
to replenish the LOB. The duration of an exceedance beyond c.10 is expected
to be large since it measures the duration during which market illiquidity,
having exceptionally been nearly zero, went slightly worse before returning
to the already exceptionally high level of liquidity. The latter duration may
well be useful to a trader who wishes to time his trades to happen during
exceptionally liquid periods for instance, but TEDs beyond large quantiles
such as c.90 and c.99 are probably more interesting to most since they measure
the duration of a really bad episode before returning to a better (but still
poor) level.

The regression results below are from a panel regression with all fixed
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effects.

6.2 Regression results

We show the panel regression results in Table 1 below, not showing the firm
fixed-effects and the day fixed-effects. The color coding is: 0.1% significant,
1% significant, 5% significant, not signifiant.
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Table 1. Regression coefficients with ln(TED) as a dependent variable
c=0.1 c=0.2 c=0.3 c=0.4 c=0.5 c=.6 c=.7 c=.8 c=.9 c=.99

adj-R2 0.170 0.169 0.188 0.199 0.205 0.205 0.204 0.197 0.190 0.187
(Intercept) 3.18 2.49 1.77 1.57 1.27 0.93 0.63 0.39 -0.051 -0.22
‘ask-scale-0.01‘ 4.65 3.95 2.92 2.17 1.56 1.07 0.55 0.004 -0.68 -0.90
‘askAge-scale-0.001‘ -2.82 -0.52 0.63 1.17 1.77 2.90 3.37 3.35 4.55 4.31
‘askModified-scale-0.01‘ 4.64 5.53 6.11 6.43 6.56 6.75 7.07 7.57 7.76 7.90
‘askVolume-scale-0.001‘ 0.87 1.71 1.86 4.15 5.11 4.95 4.75 4.85 5.09 2.16
‘bid-scale-0.01‘ 4.64 3.97 2.95 2.32 1.82 1.24 0.77 0.39 -0.37 -1.02
‘bidAge-scale-0.001‘ -3.68 -2.13 -0.64 0 .064 0.82 1.32 1.56 2.68 3.53 3.25
‘bidModified-scale-0.01‘ 4.43 5.45 6.00 6.82 7.18 7.41 7.70 8.62 8.74 7.96
‘bidVolume-scale-0.001‘ 1.04 1.63 1.57 2.32 2.52 2.73 2.56 2.09 2.31 1.50
‘cancelbuy-scale-0.01‘ 4.83 4.71 2.96 1.82 1.17 1.30 -0.40 -1.62 -2.49 -1.68
‘indexact-scale-0.01‘ 14 14 12 11 9.05 7.75 6.80 5.80 4.06 0.57
‘lask-scale-0.01‘ -5.46 -4.76 -3.61 -3.00 -2.58 -2.01 -1.45 -0.72 0.027 -0.90
‘laskAge-scale-0.001‘ 1.46 0.35 1.03 1.11 0.86 -0.53 -1.12 -0.079 0.95 1.19
‘laskModified-scale-0.01‘ -7.17 -7.70 -7.23 -7.86 -7.72 -7.88 -8.08 -8.07 -8.00 -9.44
‘laskVolume-scale-1e-04‘ 5.01 3.49 15 6.38 -6.35 -15 -26 -33 -26 -9.41
‘lbid-scale-0.01‘ -5.37 -4.64 -3.54 -3.07 -2.73 -2.16 -1.63 -1.20 -0.43 -1.28
‘lbidAge-scale-0.001‘ 2.38 1.54 0.96 1.32 1.12 1.44 1.34 1.83 2.94 1.15
‘lbidModified-scale-0.01‘ -6.84 -7.33 -7.05 -7.66 -7.78 -7.89 -8.09 -8.23 -8.08 -8.77
‘lbidVolume-scale-0.001‘ -0.003 -0.26 0.45 1.09 0.30 -0.26 -0.94 -1.56 -1.98 1.75
‘lspreads-scale-0.001‘ -0.18 -3.02 -2.25 1.07 2.29 3.83 3.44 2.58 1.80 -0.52
mobuy -1.60 -1.59 -1.60 -1.61 -1.61 -1.59 -1.55 -1.45 -1.14 -0.15
mosell -1.61 -1.60 -1.60 -1.59 -1.58 -1.56 -1.54 -1.44 -1.14 -0.13
‘prevexceed-scale-0.001‘ -14 -12 -9.15 -8.01 -7.29 -6.75 -6.59 -5.83 -4.77 -4.36
‘profLO-scale-1e-08‘ 71 15 0.65 3.91 -2.81 -3.49 -3.38 -3.91 -2.96 -3.35
‘samemidspread-scale-0.1‘ -13 -8.99 -6.55 -4.92 -3.55 -2.43 -1.34 -0.14 0.88 -0.20
‘spreads-scale-0.001‘ 32 10 4.64 3.59 1.99 1.02 0.54 0.48 0.53 0.64
‘ticksize-scale-0.1‘ 6.06 7.10 7.82 7.55 8.35 9.17 9.94 8.78 9.11 4.60
‘timelast-scale-0.1‘ -8.31 -6.96 -5.51 -4.12 -2.90 -1.87 -1.09 -0.71 -0.32 0.006
log.duration.1 0.19 0.20 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.22
log.duration.2 0.089 0.090 0.09 0.09 0.10 0.10 0.10 0.10 0.10 0.10
log.duration.3 0.054 0.056 0.059 0.060 0.061 0.061 0.062 0.062 0.061 0.058
log.duration.4 0.038 0.039 0.043 0.044 0.044 0.045 0.045 0.046 0.045 0.042
log.duration.5 0.028 0.030 0.033 0.035 0.035 0.035 0.036 0.037 0.036 0.032
log.duration.6 0.024 0.026 0.029 0.031 0.031 0.033 0.034 0.035 0.034 0.026
log.duration.7 0.022 0.023 0.026 0.027 0.027 0.028 0.027 0.028 0.029 0.026
log.duration.8 0.020 0.022 0.025 0.026 0.026 0.027 0.027 0.028 0.026 0.020
log.duration.9 0.021 0.022 0.025 0.025 0.026 0.026 0.027 0.028 0.026 0.022
log.duration.10 0.023 0.024 0.028 0.028 0.028 0.029 0.029 0.029 0.029 0.025
‘num.lag.TED-scale-1e-05‘ -3.98 -2.70 -2.49 -2.94 -2.35 -3.14 -2.69 -4.12 -6.89 -18
‘lag.Announcement-scale-0.01‘ -12 -4.83 -14 -22 0.27 0.60 -5.12 -6.96 -6.61 -27
‘Announcement-scale-0.001‘ -63 -140 191 143 24 121 144 182 148 292
lag.Return -0.032 0.38 0.49 1.04 0.75 0.74 0.41 0.25 0.46 0.49
‘lag.low.volume-scale-0.01‘ 0.13 -2.44 -0.43 1.46 -1.12 0.23 3.16 3.63 2.37 1.05
‘lag.high.volume-scale-0.01‘ 4.09 3.38 1.92 2.10 1.25 -0.51 0.39 -1.85 -1.92 -2.55
season.480.490 0.67 0.83 0.88 0.89 0.85 0.85 0.86 0.85 0.82 0.40
season.490.540 0.52 0.56 0.58 0.57 0.55 0.53 0.52 0.49 0.43 0.073
season.540.600 0.40 0.44 0.47 0.47 0.45 0.43 0.41 0.36 0.25 0.059
season.600.660 0.42 0.44 0.46 0.46 0.44 0.42 0.39 0.34 0.23 -0.005
season.660.720 0.46 0.46 0.46 0.43 0.40 0.38 0.34 0.29 0.20 -0.17
season.720.780 0.48 0.49 0.47 0.45 0.42 0.40 0.37 0.31 0.24 0.14
season.780.840 0.43 0.41 0.37 0.35 0.32 0.31 0.29 0.27 0.23 0.37
season.840.900 0.18 0.17 0.16 0.14 0.12 0.11 0.11 0.10 0.12 0.35



6.3 Importance of covariates

The empirical results on the covariates, their magnitude and signs provide a
rich source of information for the analysis of liquidity resilience.

Informational factors, including anticipatory actions taken by LO suppli-
ers, form the baseline explanations for illiquidity exceedance durations, to
which a disparate set of non-informational explanations will be added. The
TED process is persistent and clustering, suffering from bursts of informa-
tional clusters.

We provide our intuition for each finding. These explanations must by
necessity be tentative, given that we do not observe the IDs of the traders, nor
do we observe the contemporaneous LOBs on all other trading venues. While
we are not always able to discriminate between competing explanations, we
still find strong results using very little information, which by and large has
the distinct advantage of allowing algorithmic traders to implement methods
such as ours with publicly available information in near real time and better
manage their trading or liquidity provision.

The discussion below applies to the spread as a liquidity measure, but
we obtain largely similar results from the XLM measure. Below, we simply
refer to each covariate by name. The variates that are not only statistically
but also economically more significant have two stars: **.

6.3.1 Details on LOB explanatory variables

We now interpret the regression coefficients one by one.

** MO buy (-), MO sell (-).
c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99

MOBuy -1.6 -1.59 -1.6 -1.61 -1.61 -1.59 -1.55 -1.45 -1.14 -0.15
MOSell -1.61 -1.6 -1.6 -1.59 -1.58 -1.56 -1.54 -1.44 -1.14 -0.13

The coefficients of the market-order (which included marketable limit-
orders) dummies are uniformly around −1.6 for both variables and across all
c up to around .8 beyond which the absolute magnitudes become smaller.
For instance the value is -1.14 for c.90 which translates to E[τ‖·,MObuy=1]

E[τ‖·,MObuy=0]
=

exp(−1.14) = 0.32.
If the exceedance has been caused by a market(able) order blowing through

the book, as opposed to being caused by pulled limit orders, then the ex-
pected exceedance duration is significantly smaller.
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It is as if much of the time the market decided that a market order
either reflects a retail trade, and thus does not carry private information
that matters materially to the LO suppliers (so that new LOs replace the
executed ones), or that it reflects an aggressive release of private information
or uncertainty, and therefore the information innovation is fully digested in
one movement. Relatedly there is the complementary possibility that the
pulling of limit orders (and the absence of new LOs placed across the touch)
occurs in anticipation of a private information event, explaining the longer
expected duration. Indeed, a liquidity provider would not replace a limit
order by an identical one immediately after pulling it, and other liquidity
providers may infer an informational event and not step in immediately, or
may in fact not immediately find out about the liquidity event related to
another participant’s pulling of LOs (whereas if a marketable order takes out
LOs, the liquidity provider whose LOs were hit would find out very quickly).

** samemidspread (-,0) suggests that uninformative exceedances (where
the mid does not move) lead to shorter exceedance durations for most thresh-
olds but the highest. For the highest exceedances, the average TED does not
differ much if the mid moves or does not, the mid movements being dwarfed
by the movements in the spread.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
e-0.1 -13 -8.99 -6.55 -4.92 -3.55 -2.43 -1.34 -0.14 0.88 -0.2

For instance the value is -2.43 for c.60 which translates to E[τ‖·,samemidspread=1]
E[τ‖·,samemidspread=0]

= exp(−2.43 ∗ .1) = 0.78.
Beyond the informational rationale, this variate also captures a mechani-

cal effect in that it further informs on the interpretation of the variates MObuy
and MOsell, since a further possibility for the fast replenishment of the book
following a marketable order has to do with the way Chi-X partly executes
marketable limit orders. If the size of a marketable limit order exceeds the
available size of sitting limit orders at that price, a portion of the order
gets filled whereas the remaining bit is added as a limit order into the book
just thereafter. If this happens, the data shows a widening of the spread
(when the incoming marketable limit order gets filled by the entire level at
that price point) followed by a reduction of the spread to the minimum tick
size and a movement of the midprice (when the remaining order gets writ-
ten in the book as a new limit order at the best bid or ask). The variable
samemidspread is equal to zero if this is going on. Samemidspread there-
fore “corrects” the strong negative coefficients in MObuy and MOsell for this

30



mechanical splitting effect. Since the closing of the liquidity gap would be
extremely quick in the case of a split marketable limit order and also comes
with samemidpread= 0, it would not be a very prevalent effect in the data
since outages resolve much faster if the book returns to the old midspread.
Movements of the midspread following a liquidity outage are therefore more
likely to be informational than mechanical.

** Ask (+,-) and Bid (+,-) are both positive for small c and decrease
with larger threshold levels c, turning mildly negative around c = .9.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
ask e-0.01 4.65 3.95 2.92 2.17 1.56 1.07 0.55 0.004 -0.68 -0.9
bid e-0.01 4.64 3.97 2.95 2.32 1.82 1.24 0.77 0.39 -0.37 -1.02

The larger the number of different bids and asks (irrespective of volume)
on the book at the first 5 levels at the moment of the exceedance, the longer
the liquidity blow-out for c up to around .9 and the shorter the liquidity
blowout for extreme exceedances.

For instance, for c.9, E[τ‖·,Ask=x+10]
E[τ‖·,Ask=x]

= exp(−0.68 ∗ .1) = 0.934, so when
ten more asks with different IDs are added to the first five levels of the LOB,
the expected duration of a severe exceedance (c.9) is reduced by 6.6%. For

exceedances above an already decent level, say c.6 we get E[τ‖·,Ask=x+10]
E[τ‖·,Ask=x]

=

exp(1.07 ∗ .1) = 1.1, so ten more asks means the TED is increased by 10%.
The general pattern for Ask and Bid has an interesting change of sign

at a level just north of c0.8, as if Ask and Bid were like a measure of mean-
reversion of the level of measured liquidity towards some competition induced
level of c0.8 that corresponds to a normal arrival of information. In a sense,
an exceedance of a low c, say c0.4, from below can be seen to occur without
new information and after a period of exceptionally little news that pushed
the spread so low in the recent past in the first place, while an exceedance
of c.9 occurs because of a current or anticipated informational event.

If an exceedance is beyond, say c0.9, having larger Ask and Bid in the LOB
at that moment reflects more competition and faster healing of the LOB
towards that competitive level as that information gets digested by more
liquidity suppliers ready to compete and close the spread. If the exceedance
is beyond, say c0.4 coming from a level below that, larger Ask and Bid makes
a return below that low c0.4 slower because the increased number of bids or
asks at the first 5 levels were what caused the return to an informationally
more normal market, with spreads returning towards the mean competitive
level of c0.8 reflecting normal levels of news again, rather than the lower and
less competitive level of news corresponding to a spread of c0.4.
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profLO (0-) being insignificant for c below c.5 and uniform and negative
for c.5 and above illustrates that liquidity suppliers tend to replenish the book
after an exceedance faster if they have profited from filling market orders in
the last few seconds, and similarly they replenish more slowly if they suffered
losses to the aggressive traders.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
e-08 71 15 0.65 3.91 -2.81 -3.49 -3.38 -3.91 -2.96 -3.35

This magnitude of the effect is very small, though. For instance, for
c.9, E[τ‖·,profLO=x−1M ]

E[τ‖·,profLO=x]
= exp(2.96 ∗ .01) = 1.03, so if in the last 10 seconds

market makers lost 1M euros more, the duration of exceedances is expected
to increase by a mere 3%. This may be due to the fact that market makers do
not react to past losses, or, more likely, that market makers measure profits
differently and/or that those different measures are already captured by a
variety of regression variates.

AskVolume (+) and Bidvolume (+) are both positive.
c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99

askV 0.001 0.87 1.71 1.86 4.15 5.11 4.95 4.75 4.85 5.09 2.16
bidV0.001 1.04 1.63 1.57 2.32 2.52 2.73 2.567 2.09 2.31 1.5

If the LOB has lots of volume sitting at the first five levels and yet we have
an exceedance, this would mean the exceedance is serious and will therefore
need more time to resolve itself.

For instance, for c.9, E[τ‖·,profLO=x+10000]
E[τ‖·,profLO=x]

= exp(5.09 ∗ .001 ∗ 10) = 1.03, so
when total AskVolume in the first five levels increases by 10× 1000 = 10000
shares, expected TED rises by 3%.

AskAge (-,0,+) and BidAge (-,0,+) are positive from about c.4 and
c.6 onwards.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
askAge 0.001 -2.82 -0.52 0.63 1.17 1.77 2.9 3.37 3.35 4.55 4.31
bidAge 0.001 -3.68 -2.13 -0.64 0.064 0.82 1.32 1.56 2.68 3.53 3.25
For the most relevant range c ≥ c.6, the older the limit orders on the book,

the longer the duration, perhaps because the quotes have become stale and
once hit will not be replaced quickly. Perhaps the age reflects an otherwise
quiet market, so if a sudden burst occurs, it either catches limit order sup-
pliers unawares, or they don’t view a slow market (otherwise the limit orders
would have been hot or replaced earlier) as profitable. Notice, however, that
this is beyond and above the degree of activity or quietness which we con-
trol for through indexact, the activity (incl. LO submissions, amendments,
cancellations, executions) in the entire CAC40 market in the previous second
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(see below for more analysis of indexact). In terms of magnitude, for c.9,
E[τ‖·,AskAge=x+10m]
E[τ‖·,AskAge=x]

= exp(4.5 ∗ .001 ∗ 10) = 1.046, so that an average age at
the first five levels that is older by 10m leads to an expected duration that is
longer by 4.6%. It follows that the TED is quite sensitive to the age of the
LOB.

Spreads (++,0,+) are positive and significant for both small and very
large c, and they are very close to zero as well as not significantly different
from zero for c = 0.7, 0.8.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
spr. 0.001 32 10 4.64 3.59 1.99 1.02 0.54 0.48 0.53 0.64
A positive value reflects the intuition that the wider the spread just af-

ter an event, the longer we would expect the spread exceedance to last, on
average, possibly because the larger spread reflects a larger piece of news.

Overall spreads do not play as much a role as one might have guessed,
perhaps because for the bid-ask spread as a metric, all it takes is one newly
placed quote close to the touch to end the illiquidity event (with the spread
as measure), there is no need to add quotes first far from the touch and then
move towards the touch. In that sense if a liquidity event occurs and the limit
order suppliers decides that it either was not an informational event or that
the information is now out, then competition will make sure that the new
limit orders will be placed tightly immediately without any tâtonnement.

Also, other variables already capture informativeness.
** askModified (+) and bidModified (+) are very close one to the

other and they are positive, increasing with c.
c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99

askM 0.01 4.64 5.53 6.11 6.43 6.56 6.75 7.07 7.57 7.76 7.9
bidM 0.01 4.43 5.45 6 6.82 7.18 7.41 7.7 8.62 8.74 7.96

For instance, with c.9, E[τ‖·,askModified=x+1]
E[τ‖·,askModified=x]

= exp(7.76∗ .01∗1) = 1.08: one

more modified ask order present in the first 5 layers leads to an 8% increase
in expected TED, which is a very strong effect.

The increased frequency of such changes can be a reflection of uncertainty
surrounding an anticipated arrival of information. In that sense, these orders
can be interpreted as fleeting liquidity not representing a firm willingness
to provide liquidity. If the event then does occur, it is more likely to be
informational the more modifications are present in the LOB - or interpreted
as such - and the time it takes to narrow the spread again is longer.

** Ticksize (+) is pretty uniform with a slight inverse U-shape, indi-
cating that if a stock suffers an exceedance while in a larger tick size regime,
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it will take longer to return to that level, except for very large exceedances.
c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99

ts 0.1 6.06 7.1 7.82 7.55 8.35 9.17 9.94 8.78 9.11 4.6

For instance, with c.9, E[τ‖·,Ticksize=x+.1]
E[τ‖·,Ticksize=x]

= exp(9.11 ∗ .1 ∗ .1) = 1.095: a

tick size increase of .1cent leads to a 10% increase in expected TED, which
is a very strong effect.

This is commonsensical as larger tick sizes reduce the updating frequency
of the LOB since the larger tick sizes effectively correspond to larger costs of
jumping the queue.

There are also possibly mechanical reasons, since a larger tick size may
make returning to the old spread impossible. It can also possibly be viewed
as a cross-sectional finding saying that higher priced equities are less liquid
(since the number of potential investors is lower), though this argument needs
to be relativised because our regressions have firm fixed effects.

This is in spirit contrary to the theoretical results of Foucault et al. (2005).
However, our measure and their measure of resilience are not quite identi-
cal: they measure market resiliency by the probability that, after a liquidity
shock, the spread reverts to its former level before the next transaction. Also,
our analysis is not exactly a ceteris paribus result since a stock goes through
different liquidity regimes when its stock price changes, which is itself an
informative event. Finally, the quantile thresholds c in our analysis are ad-
justed daily to that day’s liquidity behaviour (though we have day dummies
and firm fixed effects). The two sets of results may in theory be compatible
since our definition does not consider transactions as the defining character-
istic but the spread itself, so one might imagine market order decisions that
come in more slowly after an exceedance when tick sizes are large.

6.3.2 Dynamic serial structure
Of the covariates, several capture directly the serial dynamic component of
the data generating process and they are all highly significant (capturing
effects over and above the fact that some days or intervals within a day
can exhibit more or less resilience for other reasons, as captured by day-
dummies and intra-day bucket dummies). Akin to volatilities that exhibit
GARCH clustering effects (Engle (1982), Bollerslev (1986)) or durations that
also exhibit clustering (e.g. Hawkes self-exciting processes used in Engle and
Russell (1998) where they find strong duration between trade clustering, and
also high serial dependence), TEDs exhibit clustering (large TEDs are likely
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to be followed by large TEDs). The signs in parentheses indicate the sign of
the regression coefficient.

Log.duration (+) are the lagged log-durations, captures the autoregres-
sive the structure of the model, and always comes with a positive coefficient.
TEDs are persistent. Coefficients decrease with the lag (we use 10 lags) from
.2 to .03, so that the effect of an exceedance duration on subsequent durations
is positive and temporary, getting slightly washed out over time.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
-1 0.19 0.2 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.22
-2 0.089 0.09 0.09 0.09 0.1 0.1 0.1 0.1 0.1 0.1
-3 0.054 0.056 0.059 0.06 0.061 0.061 0.062 0.062 0.061 0.058
-4 0.038 0.0397 0.043 0.044 0.044 0.045 0.045 0.046 0.045 0.042
-5 0.028 0.03 0.033 0.035 0.035 0.035 0.036 0.037 0.036 0.032
-6 0.024 0.026 0.029 0.031 0.031 0.033 0.034 0.035 0.034 0.026
-7 0.022 0.023 0.026 0.027 0.027 0.028 0.027 0.028 0.029 0.026
-8 0.02 0.022 0.025 0.026 0.026 0.027 0.027 0.028 0.026 0.02
-9 0.021 0.022 0.025 0.025 0.026 0.026 0.027 0.028 0.026 0.022
-10 0.023 0.024 0.028 0.028 0.028 0.029 0.029 0.029 0.029 0.025

The positive sign indicates that the expected TED over a particular
threshold will be larger, when the duration of similar exceedances in the
near past has been longer. For a given lag, the magnitude of the coefficient
is a nearly flat function of the threshold c.

** Prevexceed (-). At the time of an exceedance, a higher number
of exceedances in the past second is associated with a shorter exceedance
duration under the model. This effect is weaker the larger c.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
0.001 -14 -12 -9.15 -8.01 -7.29 -6.75 -6.59 -5.83 -4.77 -4.36

E.g. for c.9, E[τ‖·,Prevexceed=x+10]
E[τ‖·,Prevexceed=x]

= exp(−4.77∗0.001∗10) = 0.95: 10 more

exceedances in the last second reduces the expected TED by 5%.
There may be a purely mechanical effect at work here in that if there

have been many exceedances above a given c in the last second, they must
have been of short duration.

It can also capture the fact that private information is now out and priced
in, so the liquidity related aftershocks are quickly absorbed.

Since the log durations of the previous 10 exceedances are regressors in
their own right (confirming the interpretation that short exceedances are
more likely following short exceedances), the prevexceed variate captures
the complementary flavour of exceedances that happen in fast-moving mar-
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kets. One further possible explanation for this phenomenon may be that
limit order suppliers scan the markets and allocate capital and CPU power
to those securities that have suffered exceedances in the near past (and that
have therefore exhibit larger bid-ask spreads and possibly juicier profit op-
portunities to the limit order suppliers).7

** Timelast (-). A larger timelast, i.e. the longer it has been since
the last exceedance, the smaller the expected current exceedance duration,
with the effect shrinking with larger c.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
0.1 -8.31 -6.96 -5.51 -4.12 -2.9 -1.87 -1.09 -0.717 -0.32 0.006

E.g. c.9, E[τ‖·,Timelast=x+1m]
E[τ‖·,Timelast=x]

= exp(−0.32∗0.1) = 0.968: at this exceedance
moment, if no exceedance had occurred not for xm but for x + 1m, the
expected TED would be reduced by 3.2%.

This complements lagged TEDs in addressing the dynamic serial depen-
dence of exceedances and also has a clustering flavour. Since longer past
exceedances would lead to longer future exceedances by serial dependence,
absence of past exceedances for a longer while may reflect so resilient a re-
plenishment that no exceedances occurred in the first place.

6.3.3 Algorithm choice and market factors
HFTs are large players in the Chi–X market we are studying here and we
would expect them to have a strong impact on liquidity resilience. As a part
of our research, and since we do not have HFT flags, we consulted a number
of HFTs so we could determine the factors which affect their approach to
trading. What became clear is that both the number and types of trading
algorithms depend on market conditions. For example, one trader told us he
selected his algorithms at the start of his day based on market conditions at
the time. If this is indeed the case, it would provide an explanation for the
changing significance and magnitude of coefficients in the model over time.

While we are inclined to agree with this explanation, it does not directly

7This interpretation can be seen as a corroboration of the limited information processing
capacity of algorithms, CPUs and bandwidth, and the fact that fast traders need to make
a choice as to which of the different competing tasks should be given priority. This
interpretation is very much in the spirit of *** Simon (1957) that although boundedly
rational agents experience limits in formulating and solving complex problems and in
processing (receiving, storing, retrieving, transmitting) information, they otherwise remain
‘intendedly rational’ (also *** Williamson, 1981) and allocate priority to stocks that have
suffered exceedances in the near past.
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lead to a testable hypothesis, due to the absence of information regarding
the components of traders’ strategies. However, we can test the hypothesis
indirectly by relating the magnitude and choice of coefficients to prevailing
market factors.

Num.Lag.TED (-). The larger the number of exceedances during the
previous day, the lower the expected duration today.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
1e-05 -3.98 -2.7 -2.49 -2.94 -2.35 -3.14 -2.69 -4.12 -6.89 -18

For c.9, E[τ‖·,Num.Lag.TED=x+1000]
E[τ‖·,Num.Lag.TED=x]

= exp(−6.89∗0.00001∗1000) = 0.933: had

there been 1000 more exceedances beyond 90th percentile yesterday (com-
puted using yesterday’s histogram), the expected TED beyond today’s 90th
percentile would be reduced by 6.7%.

This effect is stronger for larger c. This may capture clustering of news
in the sense that if yesterday was a busy informational day that generated
lots of exceedances, it is more likely that innovations will have settled and
been digested overnight, bringing back a stronger willingness to make tight
spreads the next day. The limited attention assumption may also have some
power here in the sense that limit order suppliers may review the previous
day’s trading and reallocated priorities to those stocks that have exhibited
more action.

** indexact (+) is positive and diminishing with c, with nearly zero for
c = .99.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
0.01 14 14 12 11 9.05 7.75 6.8 5.8 4.06 0.57

For example, with c.9, E[τ‖·,Indexact=x+1000]
E[τ‖·,Indexact=x]

= exp(4.06 ∗ 0.01) = 1.041: one
thousand more limit orders submissions, cancellations, amendments, execu-
tions in the last second lead to an increase of 4% in the expected TED.

When the aggregate stock market is in a more active phase, individual
LOBs get replenished more slowly, possibly reflecting more risk to market
makers for a variety of reasons, including informational ones. Given that
placed LOs are akin to free options that the liquidity suppliers make available
to the aggressive traders, the BA spread is akin to a delayed-payment option
premium paid to the liquidity suppliers. In faster markets, option values
naturally increase, so that a return to a lower spread takes longer.

lag.Return (+) being positive indicates that the better the previous
daily return is the larger the exceedance duration today.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
0.01 14 14 12 11 9.05 7.75 6.8 5.8 4.06 0.57
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For instance, for c.9, E[τ‖·,lag.Return=x+.03]
E[τ‖·,lag.Return=x]

= exp(−0.46 ∗ .03) = 1.01. If the

previous day’s return is 3% higher, the expected duration is 1% longer.
Perhaps the market makers believe that good news get reflected in prices

quickly and adverse selection disappears while bad news trickle more slowly.
lag.high.volume (+,-) suggests that low exceedances resolve faster when

the previous day was a high volume day while larger exceedances take longer
to resolve in that case (even though the thresholds c are computed daily).

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
0.01 4.09 3.38 1.92 2.1 1.25 -0.51 0.39 -1.85 -1.92 -2.55

E.g. with c.9, E[τ‖·,Indexact=1]
E[τ‖·,Indexact=0]

= exp(−1.92 ∗ 0.01) = 0.98, suggesting that

if the previous day was a high volume day (≥ 85%), today’s expected TED
is reduced by 2%.

Announcement (-,+) is positive from c.3 onwards and would corre-
spond to the common-sensical intuition that days with US macro or monetary
announcements tend to extend the exceedance durations (beyond already
larger thresholds since thresholds are re-estimated every day).

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
0.001 -63 -140 191 143 24 121 144 182 148 292

For instance, for c.9, E[τ‖·,Announcement=1]
E[τ‖·,Announcement=0]

= exp(148 ∗ .001) = 1.16, saying

that announcement days lead to expected TEDs that are 16% longer than
on non-announcement days.

lag.Announcement (-,0,-) says that except for the median exceedances
where no effect can be felt, a day after US macro announcements is a day
where exceedance durations are shorter (beyond already lower thresholds),
perhaps because most of the uncertainty related to the announcements has
been removed.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
0.01 -12 -4.83 -14 -22 0.27 0.6 -5.12 -6.96 -6.61 -27

For instance, for c.9, E[τ‖·,lag.Announcement=1]
E[τ‖·,lag.Announcement=0]

= exp(−6.61 ∗ .01) = 0.94,
saying that if yesterday was an announcement day, then the expected TEDs
today are 6% shorter (again beyond today’s thresholds) than after a non-
announcement day.

num.lag.TED (-) shows that a larger number of TEDs beyond a given
threshold yesterday reduces exceedance durations beyond that same thresh-
old today.

c0.1 c0.2 c0.3 c0.4 c0.5 c0.6 c0.7 c0.8 c0.9 c0.99
e-05 -3.98 -2.7 -2.49 -2.94 -2.35 -3.14 -2.69 -4.12 -6.89 -18
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For instance, for c.9, E[τ‖·,num.lag.TED=x+1000]
E[τ‖·,num.lag.TED=x]

= exp(−6.89∗1e−5∗1000) =
0.93, saying that if the previous day had 1000 more TEDs beyond yesterday’s
90% quantile (irrespective of duration) then the expected TED today is 7%
shorter. However, if only 100 more exceedances yesterday are recorded, the
shortening is only about .007, or 0.7%.

7 Liquidity resilience profiles, LRPs

7.1 Definition

The level of the exceedance threshold, cj, depends on the underlying appli-
cations, of which we have described a subset. In order to understand the
relationship between the TED and and a range of thresholds we now define
the notion of the liquidity resilience profile:

Definition 2. The liquidity resilience profile, LRP, is a curve of the expected
log of the TED observations as a function of the liquidity threshold, c. More
precisely, for any threshold c it tells us the expected log duration of an ex-
ceedance of c, given that the limit order book is in the state that typically
obtains if that threshold c is exceeded.

We would expect the LRP curves to be different for different assets and
LOB regimes. One would generally expect a monotonically decreasing func-
tion of the observed TEDs for increasing thresholds cj because once we have
an exceedance over a given threshold, we must have had an exceedance over
a lower threshold. However, this does not necessarily imply that the same
will hold for the expected TEDs also, as they rely on the estimated model at
each threshold.

The LRPs also enable a brokerage firm to compare estimates of the total
time for execution of a block trade across thresholds and across assets, when
execution is dependent on a threshold level of liquidity. Alternatively, it
enables firms to identify suitable threshold levels of liquidity, such that the
block will be filled in a given time horizon.

We illustrate the LRPs in Figure 4. In order to compare resiliences across
assets and regimes, when plotting the LRPs we view them not as mappings
from c to expected log duration, but from j ∈ [0, 1] to expected log duration
through the composite mapping j 7→ cj 7→ expected log duration. Panel
(a) shows the LRP for two different assets, A and B, or for two different
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Figure 4. Liquidity resilience profiles
The figure shows a hypothetical relationship between the exceedance threshold level and
the TED, for levels, I and two slopes.
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trading venues A and B for the same asset. For very low thresholds, the
liquidity shocks for A last much longer than for B, whilst the opposite holds
true for very large liquidity shocks. Therefore, the intercept, I for A is much
higher, but A also has a much more negative slope. This means that for asset
A, liquidity is generally replenished quickly after an adverse liquidity shock,
bringing the LOB back to normal liquidity levels, but very high liquidity
levels take much longer to achieve.

Panel (b) shows the LRP for the same asset but in different market con-
ditions, the first in a calm market and the second in a stressed market. In
stressed market conditions, the LOB is less resilient, particularly at the lowest
thresholds. There is thus less liquidity replenishment activity at all thresh-
olds, and this can occur through a reluctance of market makers to replenish
activity in uncertain stressed conditions.

7.1.1 Applications
The LRPs are informative about the level of liquidity replenishment in the
LOB and can identify assets for which we would expect a swift return to
a high liquidity level after a shock. To the extent that liquidity replenish-
ment in the millisecond environment is predominantly the domain of high–
frequency LO suppliers, LRPs can also indicate the presence or absence of
such traders in particular assets. This is in line with the theoretical predic-
tions of Foucault et al. (2005), who suggested that large spreads would be
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more common in markets dominated by impatient traders (those submitting
aggressive market orders, rather than passive limit orders).

One use of the LRP is in aiding the comparison of liquidity resilience
across assets. In particular, given an assumption about the LOB regime,
LRPs for different assets enable an ordering of the assets by their liquidity
resilience. This is helpful because it indicates the ex–ante relative risk of
trading each asset in that LOB regime. The risk here refers to the duration
of the disturbance caused by trading.

We can also compare profiles for the same asset, but for different LOB
regimes. This enables a regulator to perform scenario analysis, in order to
understand the effects of stressed market conditions on market composition,
for example. Poor liquidity replenishment (and thus high values for the ex-
pected TED) would be associated with the absence of high–frequency market
makers.

In the case where one is interested in the duration of exceedances over
particular levels of a liquidity measure, the LRP may be presented as a
function of the absolute liquidity threshold level, rather than the relative
levels used here.

7.2 LRP Results

By estimating the model across different thresholds, we can construct the
liquidity resilience profiles (LRPs).

Figure 5 shows the LRP for each asset, averaged across all the days. It
is as expected declining with extreme thresholds,

Figure 6 shows the average LRP for Crédit Agricole for the first 10 days
and last 10 days of the sample, as well as across all the days. In the first 10
days, the volatility of stock returns was 1.4%, whilst in the last 10 days it
was 3.1%, indicating that the Figure shows both stressed and non-stressed
time periods.

7.2.1 Liquidity resilience asset ordering
Figures 7 and 8 show example LRPs of certain CAC40 stocks, broken down
by market capitalisation and by share price. Comparing the intercept terms
gives us an ordering of the assets by the relative likelihood of the asset re-
turning to an extremely high (and exceptional) level of liquidity in a short
period of time. The same ordering can be performed for any threshold level of

41



Figure 5. LRPs for all assets and the average
The figure shows the average LRP for each asset and the average across all assets. Some
LRPs end in c80 or c90 because the stock has a low trading volume and there are not
enough exceedances at extreme thresholds.
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Figure 6. LRP for Crédit Agricole and different market conditions
The figure shows the average LRP across all days and for the first and last 10 days, as
well as the stock return volatility for those days.
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liquidity, and we facilitate comparison of the profiles of assets, by presenting
thresholds as deciles of the liquidity measure, rather than absolute values.

We can compare the shapes of the LRPs visually or define orderings.

Definition 3 (First and Second Order Resilience Dominance). First Order
Resilience Dominance (FRD) between lrpA and lrpB (say, between asset A
and asset B across all periods and regimes, or between the same asset in a
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Figure 7. Liquidity Resilience Profile for some of the stocks with low (left)
and high(right) market capitalisations in the CAC40
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Figure 8. Liquidity Resilience Profile for some of the stocks with low (left)
and high(right) share prices in the CAC40

low vol environment A and in a high vol environment B, or between a given
asset on one trading venue A vs on another one B) is be defined as

AfrdB ⇔ lrpA(cj) ≤ lrpB(cj) ∀j ≥ j > 0

and the weaker Second Order Resilience Dominance (SRD) – capturing not
absolute superiority but better resilience after large exceedances – is defined
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as

AsrdB ⇔
∫ +∞

q

lrpA(cj)dj ≤
∫ +∞

q

lrpB(cj)dj ∀j ≥ j

for some small j > 0 chosen to make sure LRPs and integrals are defined.

Next, we can cluster assets according to whether they show similar be-
haviour in terms of TED durations across different thresholds in certain mar-
ket conditions. Particularly in stressed market conditions (for example, when
volumes are low and spreads are high), a market maker may focus her efforts
on assets whose LRPs do not differ greatly from those in normal conditions,
as those assets will be more likely to respond quickly to further liquidity
shocks.

7.2.2 Liquidity resilience in different regimes
In this section we amend the definition of LRP slightly by choosing a different
conditioning set. Whereas in the general definition, lrp(c) is computed given
the typical variates that obtain if indeed there is an exceedance of c, we can
further condition on additional variate constellations.

For instance, in Figure 9, we observe directly how a change in the LOB
regime (through the LOB covariates) has an impact on the Liquidity Re-
silience Profile by further conditioning on the LOB being the one of a normal,
a typical extremely quiet and a typical extremely volatile day, respectively.
In particular, we see that the curve is shifted upwards in the case of the
stressed scenario, corresponding to a higher expected log TED. This indi-
cates that, at least in the case of Crédit Agricole, the relationship between
the durations of exceedances over different thresholds does not change when
we move to a stressed scenario.

However, this relationship between the liquidity profiles at different regimes
does not have to hold in general, and we provide as an example the liquid-
ity profiles for BNP Paribas in Figure 9. In this case, one has to consider
carefully the liquidity resilience behaviour of the asset, particularly when
operating in a regime characterised by poor liquidity replenishment.

The ranking of assets by their LRP can also be performed for different
assumptions regarding the LOB regime. In this case, one can observe whether
the rankings of the assets are consistent between regimes. One would prefer to
operate in assets that have a high level of liquidity resilience for the prevailing
regime. This would have implications for brokerages, for example, who have
a large volume of orders to fill for different assets, and have some flexibility
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Figure 9. Liquidity resilience profile for Crédit Agricole (left) and BNP
Paribas (right) in both the normal LOB regime (in which covariates take the
values of a median day) and extreme scenarios (in which covariates take the
quantile values (10% and 90% for the ‘Extreme 1’ and ‘Extreme 2’ cases,
respectively) of such an extreme day.

about the timing of their orders. They can then select particular assets to
focus on, depending on the ranking of the assets in that regime.

As far as market quality is concerned, regulators would be interested in
comparing LOB resilience across regulatory regimes (say different tick sizes,
order-to-trade ratios etc.), and a measure such as Second order Resilience
Dominance would allow them to choose amongst alternative regimes in a
coherent fashion.

7.2.3 Results for the XLM liquidity measure
For comparison with previous results, we also provide in Figure 10 the LRPs
obtained for a normal LOB regime for the subset of assets of the CAC40 that
we consider here. For most assets, the shape of the LRP in the XLM case
seems broadly similar to its counterpart in the spread case, given the same
assumption about the LOB regime.

45



2

4

6

1 2 3 4 5 6 7 8 9
Threshold (decile)

C
on

di
tio

na
l e

xp
ec

te
d 

ln
(T

E
D

)

factor(asset)
ACAp
ACp
AIp
ALOp
ALUp
BNPp
BNp
CAPp
CAp

Figure 10. Liquidity Resilience Profile for a subset of assets in the CAC40,
using the XLM as the liquidity measure and assuming a normal LOB regime

8 Conclusion

We shed light in this paper on the narrow but important question of what
drives resilience in modern computer-based trading environments. A market
is resilient if an evaporation of liquidity quickly resolves again, that is if the
exceedance duration beyond an illiquidity threshold is short. Our resilience
methods work with any liquidity measure, and for concreteness in this paper
we focus on the frequently-used measures that are the bid-ask spread and
the round-trip cost, the results being very similar for both.

The reason that resilience of liquidity crucially matters in today’s markets
is because static liquidity notions on their own are not informative any longer
given the fast flickering of the order book and the relatively minor capital and
inventories held by market makers. The speed of order book replenishment
has replaced capital to a large extent, and the ease of trading is captured by
the dynamic notion of liquidity resilience.

We use survival analysis which allows us to quickly and conveniently char-
acterise the effects of the shape of the current and past limit-order book and
of the overall market conditions on the duration of an illiquidity event. The
estimated parameters provide directly interpretable guidance as to how long
the exceedance is expected to be, allowing a market participant to readjust
its trades accordingly so as to minimise trading costs, market impact and
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slippage.
Applying our methods to millisecond data from Chi-X, we show that the

effect of the shape of the LOB on exceedance durations is consistent with
informational considerations. At the moment of the exceedance, exceedances
are predicted to be longer if the LOB, its recent history as well as overall mar-
ket variates, are in constellations that are consistent with those one would
expect if informational events were expected by the market. Market par-
ticipants can adapt our methods to better navigate liquidity and minimize
trading costs, market impact and the timing of trades.

These findings can then be used to construct what we call Liquidity Re-
silience Profiles (LRP) that condense the resilience behaviour of an asset on
a given venue (and can be made conditional on a given overall market envi-
ronment) for any given exceedance size. These profiles, generally decreasing
in the size of the exceedance, can be used to order the resilience between
different assets on the same venue, or between different venues for the same
asset, or between different macro environments for the same stock on the
same venue. Such information allows traders to better choose venues to min-
imize trading costs, or it allows market supervisors to gauge the quality of
markets in various stressed conditions.
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Roşu, I., “A dynamic model of the limit order book,” Review of Financial
Studies 22 (2009), 4601–4641. 2.1

Toke, I. M., ““Market Making” in an Order Book Model and Its Impact on
the Spread,” in Econophysics of Order-Driven Markets (Springer, 2011),
49–64. 3

50


	Introduction
	Modelling approach
	Data and liquidity measures
	 Results 

	Related work
	Liquidity resilience
	Survival analysis

	A model of liquidity resilience 
	Threshold exceedance duration — TED
	Liquidity thresholds
	Survival model 

	Covariates
	Data
	Diurnal patterns

	Regression Results and Discussion
	Model estimation choice
	Regression results
	Importance of covariates

	Liquidity resilience profiles, LRPs
	Definition
	LRP Results

	Conclusion

