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1 Introduction

Financial exchanges have different modes of operation, or market models, for different assets. This
is often determined by an asset’s liquidity in the prevailing period, and an exchange will endeavour
to choose a market model that facilitates trading in the asset. As an example, the electronic
trading system Xetra, operated by Deutsche Börse, offers continuous trading for the most liquid
assets, and the same mode of operation is offered for the second most liquid category of assets, but
supplemented with a ‘Designated Sponsor’, who has market-making obligations. Other securities,
such as structured products, feature a single market maker, while the less liquid assets are traded
instead in ‘continuous auction’ mode, which features a specialist.

The classification of assets in most electronic exchanges is performed according to their liquidity
which is averaged over a particular period of time (typically quarterly). For assets which feature a
Designated Sponsor (termed a Designated Market Maker in other exchanges), there are requirements
regarding the maximum spread, minimum quote size and the effective trading time. In return
for fulfilling their quoting obligations, Designated Sponsors receive a full reimbursement of the
transaction fees incurred.

In this paper, we argue that in order to ensure high-frequency liquidity provision, exchanges
need to consider not only the average liquidity over time, but also the time required for liquidity to
be replenished, which we will explain and quantify as an indication of liquidity resilience. This is
because large orders are increasingly being partitioned by execution algorithms into multiple smaller
tranches, and traders take advantage of liquidity replenishment to improve execution1.

Such replenishment is swift when market liquidity is resilient, and the effect of resilience on e.g.
optimal execution has been considered in the past in the models of Obizhaeva and Wang [2012]
and Alfonsi et al. [2010]. However, these models generally considered resilience to be constant or
have a very simple parametric form. Thus, they failed to attribute the resilience characteristics to
interpretable features of the limit order book structure.

The model of Panayi et al. [2014] instead introduced a new notion of resilience explicitly mea-
suring the time for liquidity to return to a previously-defined threshold level. This approach was
agnostic to the particular class of liquidity measure considered, and could therefore accommodate
volume-based, price-based and cost-of-return-trip-based measures. They showed that resilience was
not constant, but was instead related to the state of the LOB. This allowed them to understand
the effect of different LOB structural explanatory variables on the resilience metric constructed,
and as part of this, they considered a regression based specification. In particular, they considered
simple log-linear regression structures to relate the response (the duration of liquidity droughts) to
instantaneous and lagged limit order book structural regressors intra-daily.

Using Level 2 LOB data from the multi-lateral trading facility Chi-X, we have access to the
state variables considered by Panayi et al. [2014], and can therefore consider this notion of resilience
further in the study undertaken in this manuscript. We significantly extend their resilience modelling
framework to allow for additional structural features, as well as a greater class of distribution
model types to better explain and capture the liquidity resilience features of a range of assets intra-
daily. In particular, we consider two classes of regression models which allow for more general
resilience model dynamics to be captured and more flexible distributional features to be explored,
ultimately improving the fit and forecast performance of the models. Firstly, we have Generalised
Linear Models, or GLMs, which typically assume a conditionally specified exponential family of
distributions for observation assumptions for the response, in our case the exceedance times over a
liquidity threshold. The second class is that of Generalised Additive Models for Location, Shape

1[Chlistalla et al., 2011] notes that the average order size is one-eighth of that of fifteen years ago, in terms of
number of shares, and one-third in dollar value.
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and Scale, or GAMLSS, which relax this assumption and can consider a wider, general distribution
family with the limit order book regressors entering not just into the location/mean relationship
through a link function, but also into the shape and scale parameters directly. This informs the
skewness and kurtosis of the liquidity profiles and the resilience of the liquidity in settings of liquidity
leptokurticity and platokurticity.

It is critical to develop these new modelling approaches, as they provide a directly interpretable
modelling framework to inform exchanges and market making participants of the influence different
structural features of the LOB for a given asset will have on affecting instantaneously within a
trading day the local liquidity resilience. They thus provide insights into how best to manage and
design market making activities to improve resilience in markets. Our results reveal that consider-
ing the more flexible Generalised Gamma distribution assumption within a GAMLSS framework,
with multiple link functions to relate the LOB covariates to the different distribution parameters,
improves the explanatory performance of the model. On the other hand, the simpler Lognormal
specification also achieves respectable explanatory power and its estimation is more robust.

We also statistically assess the significance of the explanatory variables in greater detail, and
across datasets for companies from 2 different countries. We find that, in agreement with empirically
observed market features, a larger deviation of the liquidity from a given resilience threshold level
would be associated with a longer deviation from that level of liquidity (liquidity drought). On the
other hand, a larger frequency of such deviations from a liquidity threshold level would be associated
with swifter returns to that level (shorter duration liquidity droughts). Using the proposed liquidity
resilience modelling framework we can also determine the regimes under which we are likely to see
different structural features in the resilience behaviour.

Our results indicate that resilience considerations should also be a factor when deciding the quot-
ing requirements for exchange-designated liquidity providers, such as the aforementioned Designated
Sponsors. That is, along with the requirements for maximum spread and minimum volumes, they
should be subject to additional requirements for liquidity replenishment, ensuring that throughout
the trading day, the LOB returns swiftly back to normal levels. As we have shown that liquidity
resilience is dependent on the state of the LOB, exchanges can use the modelling approaches we
have proposed, in order to determine the appropriate level of liquidity replenishment requirements,
given prevailing market conditions. In addition, liquidity providers may use the model to determine
the best response to a liquidity drought.

The remainder of this paper is organised as follows: In Section 2 we discuss incentives for liquidity
provision in the limit order book and other market structures. Section 3 introduces existing concepts
of liquidity resilience, as well as the TED metric analysed in this paper. Section 4 outlines the
regression model structures of increasing complexity employed in our analysis of liquidity resilience.
Section 5 describes the data used in this study and section 6 presents the results in terms of
importance of individual covariates for explaining resilience, and the explanatory power of the
models with different regression structures and different distributional assumptions for the response.
Section 8 concludes with proposals about altering current incentive schemes for liquidity provision.

2 Ensuring uninterrupted liquidity provision via exchange

incentives

In many modern financial markets and across different asset classes, a large part of liquidity provision
originates from high-frequency traders. Indicatively, for the equities market, a typical estimate of
at least about 50% of total volume is contributed by such market participants, see details in the
report by the SEC [2010]. However, these firms have no legal obligations to provide continuous

3



access to liquidity, and may (and indeed do2) reduce their activity in times of distress. For this
reason, and in order to also ensure access to liquidity for younger, smaller cap, or more volatile
stocks, exchanges provide incentives to firms to facilitate liquidity provision. These market making
obligations have been found to improve liquidity for these assets, and by extension, also improve
year-on-year returns [Venkataraman and Waisburd, 2007, Menkveld and Wang, 2013]. Benos and
Wetherilt [2012] summarise the impact of introducing designated market makers into a stock market.

Both the incentive structure and the obligations differ across exchanges, and in particular, they
may be applicable only for certain market structures. For example, in London Stock Exchange’s
hybrid SETS market, Designated Market Makers must maintain an executable quote for at least
90% of the trading day, as well as participate in the closing auctions, and they are also subject to
maximum spread and quote size requirements, which vary across stocks. In return, they incur no
trading fees, and are allowed to ask for the suspension of trading of an asset when prices are volatile
[Benos and Wetherilt, 2012].

As an example of specific exchange considerations for classifying assets and incentivizing liquidity
provision we present details for the German electronic trading system Xetra, originally developed
for the Frankfurt stock exchange. Xetra offers a number of different trading models adapted to
the needs of its various trading groups, as well as the different assets classes. The models differ
according to3:

• Market type (e.g. number of trading parties);

• The transparency level of available information pre- and post-trade;

• The criteria of the order prioritisation;

• Price determination rules;

• The form of order execution.

For equity trading, the following trading models are supported4:

• Continuous trading in connection with auctions (e.g. opening and closing auction, and possi-
bly, one or more intra-day auctions);

• Mini-auction in connection with auctions;

• One or more auctions at pre-defined points in time.

We will focus on the first model, which is the market model that reflects the activity considered
here, i.e. in the context of the LOB. For many of the most well-known assets (such as those in the
main indices), there is sufficient daily trading interest, such that one should be able to execute their
orders without much delay and without causing a significant price shift (although Xetra also offers
a price improvement service, termed Xetra BEST5). However, there are also less frequently traded

2Kirilenko et al. [2014] note that during the 2010 ‘Flash crash’, the activity of high frequency traders accounted
for a much lower share of overall activity, compared to the preceeding days.

3Xetra trading models, accessed 25/05/2015, available at http://www.xetra.com/xetra-en/trading/

trading-models
4Xetra Market Model Equities Release, accessed 25/05/2015, available at http://www.

deutsche-boerse-cash-market.com/blob/1193332/8b79d504d5aaf80be8853817a6152ecd/data/

Xetra-Market-Model-Equities-Release-15.0.pdf
5Xetra continuous trading with best executor, available at http://www.xetra.com/xetra-en/trading/

handelsservices/continuous-trading-with-best-executor
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assets, for which Xetra tries to ensure uninterrupted liquidity provision, by offering incentives to
trading members to provide quotes throughout the trading day.

Xetra defines liquid equities as those in which the Xetra Liquidity Measure (XLM)6 does not
exceed 100 basis points and daily order book turnover is higher that or equal EUR 2.5m on a daily
average in the preceeding four month period7. Assets for which this is not true require liquidity
provision from trading members, termed ‘Designated Sponsors’ for continuous trading to be offered,
otherwise the assets are traded under a continuous auction model, with a specialist.

Designated Sponsors have to adhere to strict quoting obligations, which are verified daily. In
return for meeting them, they have the transaction fees they generate fully reimbursed. These
quoting requirements depend on the liquidity of the asset in the preceeding 3 month period. Table 1
shows both the basis of determination of an asset’s liquidity class, as well as the quoting requirements
for Designated Sponsors for each of these classes.

Liquidity class determination
Liquidity class LC1 LC2 LC3
XLM ≤ 100 basis points ≤ 500 basis points ≤ 500 basis points

General quoting requirements
LC1 LC2 LC3

Minimum quote size e20,000 e15,000 e10,000
Maximum spread
≥EUR 8.00 2.5 % 4 % 5%
<EUR 8.00 min {e0.20; 10.00%} min {e0.32; 10.00%} min {e0.40; 10.00%}
<EUR 1.00 e0.10 e0.10 e0.10

Minimum requirements in continuous trading: Quotation duration
90%

Table 1: Quoting requirements for Designated Sponsors on the 3 liquidity classes of Xetra (repro-
duced from the Xetra Designated Sponsor guide), accessed 28/05/2015.

2.1 Limitations of current incentive schemes

Designated Sponsors can select the time within the trading day for which they wish to be active,
as long as it exceeds 90% of the day on average. We argue that a more useful quoting requirement
would also reflect the intra-day trading patterns, i.e. considering also the variation in trading
activity throughout the trading day. If the 10% of the day for which the Designated Sponsor is not
active corresponds to a significant proportion of daily activity (e.g. close to the beginning and end
of the trading day), then 90% activity in calendar time does not correspond to 90% in participation
over the day.

Indeed, an empirical analysis of intra-day liquidity behaviour shows that liquidity demand
throughout the trading day is far from uniformly distributed, and thus the quoting requirements
above may not have the desired effect. Figure 1 shows the proportion of the trading day for which
the spread for Sky Deutschland on the Chi-X exchange was in the top quintile for the day. Panayi

6The Xetra Liquidity Measure is a Cost-of-Round-Trip measure, quantifying the cost to buy and immediately sell
an amount 25000 EUR of an asset

7Designated sponsor guide, accessed 25/05/2015, available at http://www.deutsche-boerse-cash-market.com/
blob/1193330/215d37772fbec9fbc39391cbc7c5821c/data/Designated-Sponsor-Guide.pdf
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et al. [2014] explained that the presence of larger spreads at the start of the trading day can be
explained by the uncertainty of market makers about what the fair price should be for the asset,
while the second concentration can be explained by the release of certain economic announcements.

8 9 10 11 12 13 14 15 16
8 9 10 11 12 13 14 15 16

Figure 1: Every line corresponds to a trading day, and the shaded regions represents periods for
which the spread (left) and XLM (right) is in the top quintile for the day for stock Sky Deutschland.

This variation in intra-day liquidity demand is prevalent in the equities class across different
markets and different industries. However, as we have seen in this section, it is not currently
considered when determining the liquidity class of an asset, and for an extended period of time near
the start of the trading day or around important economic announcements, we may have extended
periods of low liquidity. We therefore argue that both the determination of the liquidity class and
the quoting requirements for Designated Market Makers could be adjusted, in order to reflect both
the absolute level of liquidit as well as the speed of order replenishment after a shock (e.g. a large
market order). Specifically, given the remit of Designated Sponsors, one would expect that they
should not only provide 2-way markets in periods in which there is no trading interest, but also
swiftly replenish liquidity in more illiquid periods, such as the ones indicated above.

To determine whether this is the case, we propose the use of resilience in market liquidity,
as measured through the Threshold Exceedance Duration (TED) [Panayi et al., 2014], which we
introduce in the next section. We acknowledge that enforcing swift replenishment of limit orders
may lead to an increase in adverse selection costs for liquidity providing operators. We therefore
also present a comprehensive modelling approach to identify the most informative determinants
of resilience, and thus aid market participants in understanding how their behaviour can affect
resilience of liquidity in the limit order book.
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3 Concepts of market liquidity resilience

3.1 Liquidity resilience introduction

The seminal paper of Kyle [1985] acknowledged the difficulty in capturing the liquidity of a financial
market in a single metric, and identified tightness, depth and resiliency as three main properties
that characterize the liquidity of a limit order book. Tightness and depth have been mainstays of
the financial literature (and indeed, are easily captured through common liquidity measures such as
the spread and depth, respectively) and there has been substantial literature in studying the intra-
day variation8 and commonality9 in these measures. However, resilience has received decidedly less
attention.

Panayi et al. [2014] provided a review of the state of the art in liquidity resilience and noted that
the extant definitions seemed to be divided into two categories: In the first, definitions provided by
Kyle [1985] and Obizhaeva and Wang [2012] were related to price evolution, and specifically to the
return of prices to a steady state. The second category of definitions, proposed by Garbade [1982]
and Harris [2002] was concerned with liquidity replenishment.
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Figure 2: An example of the duration of the exceedance over a spread threshold. The spread
threshold is c is 5 cents, Ti denotes the i-th time instant that the spread exceeds the threshold, and
τi is the duration of that exceedance.

8Chan et al. [1995] found a declining intra-day spread for NASDAQ securities (an L-shaped pattern), while Wood
et al. [1985] and Abhyankar et al. [1997] found a U-shape pattern (with larger spreads at the beginning and at the
end of the day), for the NYSE and LSE respectively. Brockman and Chung [1999] found an inverted U-shaped
pattern for the depth, which mirrors the U-shaped spread pattern (in that the peak of the depth and the trough of
the spread both correspond to higher levels of liquidity).

9There is a rich literature studying the cross-sectional commonality in liquidity in the equity markets through
the principal components of individual asset liquidity, starting with the work of Hasbrouck and Seppi [2001] and
extended by Korajczyk and Sadka [2008] and Karolyi et al. [2012]. More recent work by Panayi and Peters [2015],
however, have identified weaknesses in the PCA and PCA regression approaches for quantifying commonality and
suggests caution when heavy-tailed features are present in liquidity.
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The liquidity resilience notion introduced in [Panayi et al., 2014] is a member of the latter
category, and was the first to explicitly define resilience in terms of any of the possible liquidity
measures and in terms of a liquidity threshold at which resilience is measured against. Hence, the
concept of resilience of the liquidity measure was converted to a notion of relative resilience for a
given operating liquidity threshold that a user may specify. This was important, since as discussed in
Lipton et al. [2013], there are several different market participants in modern electronic exchanges
and their liquidity demands and requirements differ depending on their mode of operation. In
particular, this will mean that they would likely care about relative liquidity resilience characteristics
at different liquidity thresholds, which may also depend on the type of liquidity measure being
considered. All such characteristics are then easily accommodated by the framework developed
in Panayi et al. [2014], where the central concept is that liquidity is considered ‘replenished’ by
the market or market maker when a (user-specified) liquidity measure returns to a (again, user-
specified) threshold. In a financial market where liquidity is resilient, one would expect that the
time required for this liquidity replenishment would be low. This replenishment time was captured
by Panayi et al. [2014] through the idea of the threshold exceedance duration (TED):

Definition 1. The threshold exceedance duration (TED) is the length of time between the point at
which a liquidity measure deviates from a threshold liquidity level (in the direction of less liquidity),
and the point at which it returns to at least that level again.

Formally, we have
τi = inf {τ : LTi+τ ≤ c, Ti + τ > Ti} . (1)

where Lt denotes the level of liquidity at time t and Ti is the i-th time in the trading day where
liquidity deviates from the threshold level c. This notation is explained in detail in Section 4.4.

This definition was designed to intentionally allow the flexibility for it to be utilised for any
measure of liquidity of choice, be it price based, volume based or some combination. It also allowed
for the use of different threshold liquidity levels, and the setting of a very low liquidity threshold
(e.g. a high level of the spread), which meant that one could model the duration of low liquidity
regimes, which would be of interest in a regulation setting. In the high-frequency liquidity provision
setting we are considering in this paper, an exchange would be interested in modelling the time for
return to a ‘normal’ liquidity level, which one could consider to be the median intra-day liquidity
level.

3.2 Regression structures for the modelling of liquidity resilience

In this paper, we employ a number of regression structures in order to model the TED liquid-
ity resilience metric. Such regression structures provide an interpretable conditional dependence
specification between liquidity resilience, for a desired liquidity measure, given structural observed
attributes or features of a given asset’s limit order book, or other important market based intra-day
trading volume/price/activity indicators. In addition, structural features such as known reporting
times and announcement features can also be incorporated into the model explicitly to see their
influence on core aspects of the resilience in the liquidity of the asset.

Although regression models based on simple linear structures linking the mean of a response
to a linear functional of the covariates have been in widespread use for over 200 years, it is only
relatively recently that such structures have begun to be significantly generalized. Innovations
in the class of parameteric regression relationships available have included the incorporation of
non-linear structures, random effects, functional covariates and relationships between not just the
mean (location of the response variable) and the linear model, but also direct relationships between
covariates and variance/covariance, skewness, kurtosis, shape, scale and other structure features of
a number of distributions for the response variable.
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The beginning of this revolution in regression modelling was heralded by the highly influential
family of Generalized Linear Models (GLMs), see for instance Nelder and Baker [1972], which was
intended to unify the extant regression approaches of the time. Up to this point, only parametric
mean regression models were considered, i.e. only the mean of the distribution was related to
the explanatory variables. Shortly after, the variance of the distribution was also modelled as a
function of explanatory variables, in the case of normal models [Harvey, 1976]. Parametric variance
regression models for different assumptions of the response (e.g. for the exponential family) followed,
see further discussion regarding the adaptation to different contexts in Rigby et al. [2013].

GAMLSS, introduced by Rigby and Stasinopoulos [2005], enabled the modelling of a response
variable from a general parametric distribution. The explanatory variables of the model are then
related to each distribution parameter through a link function, which can have both linear and non-
linear components. One can explicitly see if the distribution of resilience in liquidity under a given
market regime, on a given day, is likely to affect the mean, variance, skewness or kurtosis of the
liquidity resilience. More importantly, which LOB characteristics are most likely to be influential in
affecting these attributes of the resilience. By identifying these one can then devise market making
strategies to improve resilience in a given market regime.

It is clear, therefore, that such a formulation is very general, encompassing previous approaches
such as GLMs. Indeed, the supporting R package used in this paper [Stasinopoulos and Rigby,
2007] enables the modelling of more than 80 parametric distributions. We can see, therefore,
that incorporating GAMLSS into our approach would result in a highly desirable and flexible
framework for modelling TED duration data, and the next section will detail precisely how one can
define different link function to relate the distribution parameters of the TED response to the LOB
explanatory variables.

4 Hierarchy of regression models for liquidity resilience in

the LOB

The framework we employ here aims to explain the variation in the TED random variables as a
function of independent explanatory covariates obtained from the state of the LOB at the point of
exceedance. We start first with a very brief description of log-linear regression structures, in order to
introduce concepts before moving on to Generalised Linear Models (GLM) and Generalised Additive
Models for Location Shape and Scale (GAMLSS).

4.1 Log-linear regression structures

For the TED random variables, since we are modelling positive random variables, we can consider
a log-linear formulation, incorporating model covariates as follows

ln(τi) = xTi β + εi, (2)

where εi ∼ N (0, σ) is a random error term. Under the assumption that τi|xi ⊥⊥ τj|xj we can relate
the expected log response to the covariates

E [ln(τi)|xi] = xTi β.

One can see that a unit change in, say, x
(k)
i to x

(k)
i + 1 will have a multiplicative effect of eβk

on the response τi, i.e. the Threshold Exceedance Duration. The sign of the coefficient for a given
covariate indicates the direction of the partial effect of this variable.
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4.2 GLM

While convenient, the log-linear regression structure is also restrictive in the model’s expressive
power and flexibility, and we may therefore opt to consider instead a GLM. The construction of
such a parametric regression model requires the specification of three key components:

1. A distribution for the response random variables. In this context, this is the conditional
distribution of the TED, given the covariates constructed from the LOB structure.

2. The conditional mean structure of the TED, which links the linear regression model com-
prised of the independent observed explanatory covariates to the response (typically through
a transformation known as the link function).

3. A specification of the variance function, perhaps also as a function of the mean.

GLMs enable us to fit models when the response variable belongs to the exponential family of
distributions, i.e.

f(τ |θ, φ) = exp

(
τθ − b(θ)
a(φ)

+ c(τ, φ)

)
(3)

where θ is the location parameter and φ the scale parameter and where a(φ), b(θ), c(τ, φ) are known
functions defining particular subfamilies.

A GLM relates the expected response µ = E [τ ] to a linear predictor xTβ through a link function
g(·), i.e. g(µ) = x′tβ. When this link function is the identify function, it is equivalent to a standard
linear model. If g(µ) = θ then the function g(·) is called the canonical link and we have θ = x′tβ.

Let us consider two members of the exponential family, which are widely used for analysing
duration data, for the distributions of our response. The Gamma distribution

f(τ |α, β) =
βατα−1

Γ(α)
exp (−βτ) , τ ≥ 0, α ≥ 0, β ≥ 0, (4)

which we can see is in the exponential family with θ = β
α

, φ = 1
α

, a(φ) = − 1
α

and b(θ) = log(θ). We
use the reparameterisation

f(τ |µ, σ) =
1

(σ2µ)1/σ2

τ
1
σ2
−1 exp (−τ/(σ2µ))

Γ(1/σ2)
, τ ≥ 0, µ ≥ 0, σ ≥ 0, (5)

so that E[τ ] = µ. Then σ2 = 1
α

and µ = α
β

and we see that the linear predictor xTβ would be
related to both parameters. However, if the shape parameter α is fixed, only the scale parameter β
varies with the linear predictor.

We also consider a second member of the exponential family, namely the Weibull distribution,
given by

f(τ |µ, σ) =
σ

β

(
τ

β

)σ−1

exp

{
−
(
τ

β

)σ}
, τ ≥ 0, σ ≥ 0, β ≥ 0, (6)

where β = µ/Γ( 1
σ

+ 1). We can see that this is also a member of the exponential family (for fixed
σ), with a(φ) = φ = 1, θ = −1

µσ
, and b(θ) = σ lnµ. As in the case of the gamma distribution, if the

shape parameter is fixed, only the scale parameter varies with the linear predictor.
In order to ensure that µ is positive, in both cases we use the log link, i.e. g(µ) = log(µ). For

the exponential family of distributions one can obtain the conditional expectation of the response
as
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E [τ |x] = b′(θ) = µ (7)

and the variance as
V ar [τ |x] = a(φ)b′′(θ) = a(φ)V (µ) (8)

see the derivation in McCullagh and Nelder [1989]. It is clear then that the formulation of the
exponential model above allows one to model cases when the response variables are of the same
distributional form and they are independent, but not identically distributed, in that they may have
different mean and variance. In this case, the variance varies as a function of the mean.

De Jong et al. [2008] suggests that there are many functions V (µ) that cannot arise from an
exponential family distribution. In addition, one may also want to consider a distribution which is
more flexible in terms of skewness and kurtosis. In this case, we propose the flexible generalised
gamma distribution class of models given by

fτ (τ ; b, a, k) =
b

Γ(k)

τ bk−1

abk
exp

(
−
(τ
a

)b)
, k > 0, a > 0, b > 0 (9)

which was first introduced by Stacy [1962] and considered further in a reparameterised form by
Lawless [1980]. This distribution has the additional advantage that it has a closed form expression
for the quantile function, which we will see in Section 7. This means we can also explicitly study
the relationship between quantiles of the TED and certain LOB covariates, i.e. also interpreting the
resulting regression as a quantile regression [Noufaily and Jones, 2013]. As the generalised gamma
distribution is not a member of the exponential family of distributions, it cannot be modelled using
a GLM. We will thus show in the next subsection how one can model this using the GAMLSS
framework.

4.3 GAMLSS

GAMLSS requires a parametric distribution assumption for the response variable, but this can be
of the general distribution family, rather than only in the exponential distribution family, as in the
case of the GLM. It differs from the GLM additionally, in that where the former assume that only
the expected response is related to the predictor through a link function, GAMLSS has separate
link functions relating each of the distribution parameters to the explanatory variables. As such, it
enables one to capture features such as overdispersion or positive and negative skew in the response
data. We will base the formulation presented on that of Rigby and Stasinopoulos [2005].

Let τ ′ = (τ1, . . . , τn) be the vector of the response and let us assume a density f(τi|θi) where
θi = (θ1,i, θ2,i, θ3,i, θ4,i) = (µi, σi, κi, νi), where µi, σi, κi, νi are the distribution parameters, with the
two first relating to location and scale and others typically relating to shape. Let also Xk be a
fixed known design matrix containing the covariates at the point of exceedance T for each observed
TED random variable. In this setting, we can define the following link functions to relate the k-th
distribution parameter θk to the vectors of explanatory variables Xk and {Zjk}Jkj=1

gk(θk) = Xkβk +

Jk∑
j=1

Zjkγjk (10)

where {Zjk}Jkj=1 are optional components for the incorporation of random effects.
GAMLSS are referred to as semi-parametric regression type models, as they assume a parametric

distribution for the response, and they allow for non-parametric smoothing functions in the response.
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To see this, let Zjk = In, the n× n identity matrix, and let γjk = hjk = hjk(xjk). Then the semi-
parametric form can be be obtained according to

gk(θk) = Xkβk +

Jk∑
j=1

hjk(xjk). (11)

Hence, under the GAMLSS framework, the parameters of the distribution can be modelled
using linear functions as well as flexible smoothing functions (e.g. cubic splines) of the explanatory
variables, in addition to random effects. A parametric linear model can be recovered when linear
functions of explanatory variables are considered, i.e. in the case of the identity link function

gk(θk) = Xkβk. (12)

Using this specification, we can consider very flexible multiple-parameter distributions, such as
the Generalised Gamma distribution (hereafter g.g.d.). We assume that the TED random variables

are conditionally independent, given the LOB covariates, i.e. τ
i.i.d∼ F (τ ; k, a, b), with the density

given in Equation 9. The g.g.d. family includes as sub-families several popular parametric models:
the exponential model (b = k = 1), the Weibull distribution (with k = 1), the Gamma distribution
(with b = 1) and the Lognormal model as a limiting case (as k →∞).

We now wish to relate this statistical model assumption to a set of explanatory variables (co-
variates) from lagged values of the LOB. In practice, to achieve this, one could work on the log
scale with ln(τ), i.e. with the log-generalized gamma distribution, as this parameterisation is known
to improve identifiability and estimation of parameters. Discussions on this point are provided in
significant detail in Lawless [1980]. Instead, as we employ the gamlss R package of Stasinopoulos
and Rigby [2007] for estimation, we have the following reparameterisation

f ′τ (τ ;µ, σ, ν) =
|ν|θθ

(
τ
µ

)νθ
exp

(
−θ
(
τ
µ

)ν)
Γ(θ)τ

(13)

where θ = 1
σ2ν2

. This corresponds to the parameterisation in Equation 9 under the transformation

f ′τ (τ ;µ, σ, ν) ≡ fτ (τ ; ν, µθ−
1
ν , θ). (14)

The regression structure we adopt for the g.g.d. model involves a log link for the time-varying
coefficient µ(xt):

ln (µ(xt)) = β0 +

p∑
s=1

x
(s)
t βs. (15)

with p covariates xt =
{
x

(s)
t

}p
s=1

measured instantaneously at the point of exceedance t = Ti, and

the link functions for parameters σ and ν can be found in Table 6.2. Each of the covariates is a
transform from the LOB for which the liquidity measure is observed, and all covariates are described
in Section 4.4.1. We note that we also considered models with interactions between the covariates,
but interaction terms were not found to be significant in the majority of our models.

Under a model with this regression structure, we observe that the conditional mean of the
duration is also related directly to this linear structure where for the i-th exceedance of the threshold,
we have

E [τi|xTi ] = exp

(
β0 +

p∑
s=1

x
(s)
Ti
βs

)(
1

k

) 1
b Γ
(
k + 1

b

)
Γ (k)

(16)

see details in Lo et al. [2002].
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4.4 Notation and definitions of LOB variables and regression model
components

We define a level of the LOB as a price level at which there is at least 1 resting order: The 1-st
level of the bid side is then the 1st level below the price midpoint at which there is a resting buy
order. In addition, we utilise the following notation for a single asset, on a single trading day.

• a denotes the ask, b denotes the bid.

• P b,i
t ∈ N+ denotes the random variable for the limit price of the ith level bid at time t in tick

units

• P a,i
t ∈ N+ denotes the random variable for the limit price of the ith level ask at time t in tick

units

• V b,i
t ∈ Nn denotes a column random vector of orders at the ith level bid at time t, with n

being the number of such orders

• Lt denotes a random variable at time t for the generic proxy for the liquidity measure.

• c for denotes the exceedance threshold level, defined relative to the liquidity measure Lt. c is
deterministic and constant over time.

• Ti denotes the i-th random time instant in a trading day that the liquidity measure Lt exceeds
the threshold c. Formally, we define Ti = inf {t : Lt > c, t > Ti−1, t > T0}, where T0 denotes
the start of the observation window (1 minute after the start of the trading day).

• τi will denote the duration of time in ms, relative to the exceedance event Ti, that the liquidity
measure Lt remains above the threshold c. These are the response random variables which
correspond to the TED.

4.4.1 Model LOB Covariates

For each TED random variable τi we consider the corresponding contemporaneous covariates in our
regression design matrix, i.e. at the times of exceedance above the specified liquidity threshold,
t = Ti. In the following, a ‘level’ of the LOB is defined as one in which there is at least 1 resting
limit order. Thus the first 5 levels of the bid are the 5 levels closest to the quote mid-point, where
there is available volume for trading. The covariates chosen pertain to the state of the limit-order
book of one given stock.

• The total number of asks in the first 5 levels of the LOB at time t, obtained according to
x

(1)
t =

∑5
i=1

∣∣V a,i
t

∣∣ (where |·| is the number of orders at a particular level), and is denoted ask
hereafter

• The total number of bids in the first 5 levels of the LOB at time t, obtained according to

x
(2)
t =

∑5
i=1

∣∣∣V b,i
t

∣∣∣, denoted bid

• The total ask volume in the first 5 levels of the LOB at time t, obtained according to x
(3)
t =∑5

i=1 TV
a,i
t , denoted askV olume

• The total bid volume in the first 5 levels of the LOB at time t, obtained according to x
(4)
t =∑5

i=1 TV
b,i
t , denoted bidV olume
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• The number of bids x
(5)
t in the LOB that had received price or size revisions (and were thus

cancelled and resubmitted with the same order ID), denoted by bidModified.

• The number of asks x
(6)
t in the LOB that had received price or size revisions, denoted by

askModified.

• The average age (in ms) x
(7)
t of bids in the first 5 levels at time t, denoted by bidAge.

• The average age x
(8)
t of asks in the first 5 levels at time t, denoted by askAge.

• The instantaneous value of the spread at the point at which the i-th exceedance occurs, which
is given by x

(9)
t = P a,1

t − P
b,1
t and denoted as spreads.

• For the nine previously defined covariates, we also include exponentially weighted lagged
versions. For example, in the case of the x

(s)
t covariate, the respective lagged covariate value

is then given by:

z
(s)
t =

d∑
n=1

wnx
(s)
t−n∆, (17)

where for a time t, we consider w = 0.75 is the weighting factor, d = 5 is the number of lagged
values we consider and ∆ = 1s is the interval between the lagged values. These covariates are
hereafter denoted with the ‘l’ prefix.

• The number x
(10)
t of previous TED observations in the interval [t− δ, t], with δ = 1s, denoted

by prevexceed.

• The time since the last exceedance, x
(11)
t , denoted by prevexceed.

• The average of the last 5 TEDs, x
(12)
t , denoted by prevTEDavg.

• The activity in the associated CAC40 index (in number of order additions, cancellations and

executions) in the previous second, x
(13)
t , denoted by indact.

• A dummy variable indicating if the exceedance occurred as a result of a market order to buy,
x

(14)
t , denoted by mobuy.

• A dummy variable indicating if the exceedance occurred as a result of a market order to sell,
x

(15)
t , denoted by mosell.

Altogether we then have 24 variates, 15 instantaneous and 9 lagged.

5 Data description

We use an 82 day trading sample (January 2nd to April 27, 2012) of all order submissions, executions
and cancellations in the limit order book for 20 German and French stocks traded on Chi-X10.
Information for these assets is provided in Table 5 and they were to chosen include both small and
large cap stocks in a number of different industries. We note that while the trading hours for Chi-X

10Chi-X was a pan-European multilateral trading facility (MTF) which merged with BATS in 2012. For the
period under consideration, it accounted for between a quarter and a third of total trading activity in the French
and German stocks considered, for more details see http://www.liquidmetrix.com/LiquidMetrix/Battlemap.
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are 08:00 to 16:30, we do not consider activity before 08:01 and after 16:29, in order to avoid market
opening and closing effects.

There is a degree of flexibility regarding the manner in which one selects the threshold levels
over which to consider exceedances. [Panayi et al., 2014] suggest that these may be specified based
on an interest in particular liquidity resilience scenarios to be studied, in other cases they can be
specified based on historical observations of the empirical distribution of the selected proxy for a
liquidity measure. The implications of each choice are discussed in [Panayi et al., 2014]. For this
paper we consider exceedances over the median threshold level, which could be of interest in the
market making setting described in this paper, as well as exceedances over the daily 95% threshold
level.

6 Results and Discussion

In the following model selection procedure we assess both the appropriateness of the various dis-
tributional assumptions one might make for the TED response, as well as the importance of the
different covariates in explaining the variation in the TED, in the interest of obtaining a parsimo-
nious model. Panayi et al. [2014] explained that the assumption of stationarity in liquidity resilience
over an extended period is not supported by the data, and for this reason we also fit the model
individually for each day and each asset, where daily local stationarity is reasonably assumed. We
will first identify the covariates that are most frequently found to be significant in daily regressions
for different assets and for most of the period under consideration, in order to obtain a parsimonious
covariate subset. We will then proceed by comparing the explanatory power of the regression model
for lognormal, Weibull, gamma and Generalised gamma distributional assumptions for the response
random variable.

6.1 Model selection - covariate significance

For the empirical evaluation of the importance of the various LOB covariates in the regression,
we selected a lognormal model specification. This is because the simple linear formulation of
this model enables us to use existing model selection techniques, in order to identify the model
structure that produces the highest explanatory power for each daily regression for every asset. We
evaluate the explanatory power of this model in terms of the proportion of the variation in the
TED resilience measure that can be explained by the selected model covariates, as captured by the
adjusted coefficient of determination (adjusted R2).

We first fit a multiple regression model, in which all covariates explained in Section 4.4.1 are
considered in each daily model for the entire 4 months of our dataset, for each asset under consider-
ation. We also considered interactions between covariates, but these were not found to be significant
in the vast majority of cases. Figure 3 shows the adjusted R2 values obtained from fitting the full
model, using as a threshold either the median or the 95th percentile spread, obtained every day. We
find that for the vast majority of the stocks, the median adjusted R2 value is over 10%. For some
stocks we find even more remarkable median adjusted R2 values of over 20%, rising to as much as
50% for some daily models.

We then used the branch-and-bound algorithm implemented in the the leaps package in R
[Lumley, 2004], in order to identify the best scoring model (in terms of the adjusted R2 value).
In this context, a model subspace is the set of all possible models containing a particular number
of covariates v from the LOB. For example, the full model contains all covariates and is the only
model in its subspace, while the smallest model subspace is comprised of models that contain the
intercept and any one of the possible covariates. Intermediate model subspaces are comprised of
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Figure 3: Boxplots of the adjusted R2 value obtained from fitting the full regression model separately
for each day in our dataset for both the threshold corresponding to the 5th decile of the spread (the
median - red) and the 95th percentile threshold (blue).

models with all combinations of v = 2 . . . n− 1 covariates, where n = p+m is the total number of
covariates, contemporaneous p plus lagged m variates. There are thus n!

(n−v)!
models in each model

subspace.
To illustrate our findings we first present results for a given day of data for Credit Agricole in

Figure 4, where for all model subspaces, we rank the models in the subspace based on their adjusted
R2 score. We thus obtain the best combination of covariates, for each subspace and for each day
of data. We can then identify the covariates that are consistently present as we move between
model subspaces. This is interesting because it gives us a relative measure of the contribution
of that covariate across different assumptions of parsimony for the model. Particularly for higher
dimensional model subspaces, some of the covariates in each subset model are not significant, and
we distinguish between the covariates that are significant or not, at the 5% level of significance.

To get an indication of the time stability of these model structures (and identify covariates that
are consistently selected in the model), we illustrate the relative frequency with which parameters
appear in the best models of every subset. That is, for each model subspace, we count the number of
times each covariate forms part of the model with the highest adjusted-R2 value over the four month
period. Figure 5 indicates that the covariates identified earlier as being important in explaining
the variation in the TED for a single day (prevTEDavg and spreads) are also consistent features
in models across time. However, prevexceed does not form part of the best model very frequently,
except in higher model subspaces, possibly because it is less informative in the presence of the
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aforementioned covariates.
Besides the frequency of the presence of each covariate in the best fitting model of a given

subspace, we also evaluate individual covariate significance over time via a formal partial t-test at
the 5% level in Figure 6. At higher model subspaces, we find that several covariates are found to
be statistically significant (i.e. reject a null hypothesis for a partial t-test) less frequently. This is
what one may expect, when covariates become less significant in the presence of other correlated
covariates, i.e. collinearity in the factors of the LOB covariates takes effect. To validate this
hypothesis regarding the model structures we develop, we have performed further analysis on the
correlation between the covariates and the effect on our estimated coefficients, which can be provided
on request.

In this analysis, we recall that under our regression framework, the sign of the coefficient for
a given covariate indicates the direction of the partial effect of this variable, on the conditional
probability that the resilience, as measured by the exceedance duration for a given threshold, will
exceed a time t. Therefore we can interpret positive coefficient values as influencing the liquidity
resilience of the LOB by slowing the return to a desirable level, whilst negative coefficients tend to
result in a rapid return to the considered liquidity level, indicating higher resilience marginally, with
respect to that covariate. Panayi et al. [2014] provides an economic/theoretic interpretation of the
significant covariates for the case of the lognormal model, and we provide in Section 6.5 a discussion
regarding the sign and variation in coefficients for the different model structures we considered.

% significant % positive
askAge 48.2 22.4

askModified 62.0 50.2
askVolume 52.3 27.6

bid 58.2 34.4
bidAge 51.2 23.2

bidModified 59.5 46.6
bidVolume 54.6 27.7

indact 52.6 35.6
lask 61.0 12.1

laskAge 49.0 22.3
laskModified 65.6 7.9
laskVolume 53.0 29.7

lbid 63.5 12.4
lbidAge 45.5 20.7

lbidModified 63.7 9.3
lbidVolume 53.1 30.0

lspreads 71.6 58.9
mobuy 84.3 36.5
mosell 83.5 35.7

prevTEDavg 96.3 96.2
prevexceed 69.9 7.3

spreads 75.2 70.5
timelast 57.6 8.5

Table 2: The percentage of daily models (for all assets) for which each covariate is found to be
significant at the 5% level, and the percentage of daily models for which the sign of the associated
coefficient is positive.
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In Table 6.1 we summarise the significance and sign of the assets over time and over the different
assets in our dataset. This is interesting as we can identify the regressors for which loadings are
positive (negative) and thus produce marginal increases (decreases) in the expected TED under the
model, and thus an associated decrease (increase) in the resilience of market liquidity.

In the following, we will now consider a fixed subset of covariates in the regression models,
which we identified in our previous model selection procedure as being most significant in the daily
regressions, as well a consistent sign. These are:

• prevTEDavg

• spreads

• prevexceed

• mobuy, mosell

• ask, bid

• lask, lbid

6.2 Model selection - distributional assumptions

We now consider the effect of different distributional assumptions on the explanatory power of the
model, using the fixed subset of covariates selected above. We will compare the explanatory power
of the lognormal, Weibull, gamma and Generalised gamma regression models. We will first relate
the covariates to the mean of the response, as in the GLM structure, before considering separate
link functions for further distribution parameters, as in the GAMLSS structure.

Link function
Distribution µ σ ν
Lognormal identity log -
Gamma log log -
Weibull log log -
Generalised Gamma log log identity

Table 3: The link functions in the GAMLSS framework for each parameter for the four distributions
under consideration.

Figure 7 shows the range of adjusted-R2 values obtained from daily fits of each model over the 4-
month period for the regression models with the different distributional assumptions. We note that
in general, making lognormal and Weibull distributional assumptions leads to regression models
where the explanatory power is comparable, whereas the explanatory power of gamma regression
models is lower for the vast majority of assets. This indicates that the tail behaviour of the liquidity
resilience measure tends to be better fit with moderate to heavy tailed distributions which admit
more flexible skew and kurtosis features.

We present in Figure 8 for two assets, the estimated deviance of the fitted models every day,
for all 4 distributional assumptions that we make. We see that in general, the Generalised Gamma
produces model fits with the lowest deviance values, which is as one would expect, as it encompasses
all the other distributions as special limiting cases. We also observed that there are a few days where
the Generalised Gamma regression model failed to converge, and in these cases the Lognormal
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dominates. Over our dataset, we find that the Generalised Gamma model is the best performing
model for approximately 75% of the data, while for most of the remaining cases (which would mostly
include daily datasets where the Generalised Gamma model failed to converge), the best model is
the Lognormal one.

Lowest deviance
Lognormal 24.6%

Gamma 0.0%
Weibull 0.8%

Generalised Gamma 74.6%

Table 4: The percentage of daily datasets for which each model fit produced the lowest deviance.

6.3 Incorporating more flexibility through a GAMLSS framework spec-
ification

The advantage of the GAMLSS framework is that is one is able to relate regression covariates
to every distribution parameter through different link functions. Within the gamlss package, the
distributions are reparameterised (as explained in Section 4) so that they have common parameters
µ, σ, and possibly ν and κ. For the Lognormal model the default link function for µ is the identity
link

g(µ) = µ

= X1β1,

while for most other parameters the log link is used, e.g. for σ

h(σ) = log(σ)

= X2β2,

As we do not know apriori whether covariates are more important in affecting one distribution
parameter than another, we use a common set of covariates for each link function and therefore
in the expressions for the link functions above X1 = X2 = X. We present in Figure 9 the R2

explanatory power of the Lognormal regression model when considering only a single link function
for µ, and when considering an additional link function for σ also. We note that there is a slight
increase in the median R2, and this is observed across the assets in our dataset.

6.4 Effects of unit changes in LOB dynamics on the TED

In this section we consider how to study the influence on the TED arising from a unit change in the
statistically most important covariates given by: prevTEDavg; spreads; prevexceed; mobuy, mosell;
ask, bid; lask, lbid. This is interesting to study as it will depend on the distributional choice and
model structure. We study the perturbation effect of a unit change of one covariate in the GAMLSS
model, given all the other covariates on the mean and variance functions of the model. This will
allow us to interpret the influence of the sign and magnitude of the coefficient loadings in the model
for each covariate on the average TED (replenishment time) and the variance in the TED for an
asset.
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6.4.1 Lognormal GAMLSS mean and variance functions in the GAMLSS framework

In the case of the Lognormal model with a single link function on g (µ(x)) = βTx we know that
the mean and variance functions are given as follows:

E [τ |x] = exp
(
µ(x) + σ2/2

)
Var [τ |x] = exp

(
σ2/2

) [
exp

(
σ2/2

)
− 1
]

exp (2µ(x)) .
(18)

We can therefore consider the influence of a unit change in a covariate under this model by con-
sidering the partial difference in the mean and variance functions given a change in say the j-th
covariate, which is given by

∂

∂xj
E [τ |x] = βj

∂

∂xj
Var [τ |x] = 2βj exp

(
σ2/2

) [
exp

(
σ2/2

)
− 1
]

exp (2µ(x)) .

(19)

From this analysis one sees that a unit change in the j-th covariate xj with a negative coefficient
loading will produce an increase in the mean liquidity resilience by reducing the average TED.
Conversely, a positive loading will result in an decrease in the mean liquidity resilience.

In the case of a Lognormal model with two link functions, assuming both parameters are related
to the same set of covariates in vector x, then one has g (µ(x)) = βTx and h (σ(x)) = log (σ(x)) =
αTx. An approximation of the log link function

lnE [τ |x] ≈

(∑
j

βjxj + 1 +
∑
k

αkxk +O

(∑
k

α2
kx

2
k

))
, (20)

results in the following approximate relationship for the partial derivative of a covariate xj

∂

∂xj
E [τ |x] ≈ (βj + αj) exp

(
1 +

∑
j

βjxj +
∑
k

αkxk

)
. (21)

Hence, if βj + αj > 0 then a unit change in covariate xj will result in an increase in the average
TED. Conversely if βj +αj < 0 then an increase in covariate xj will decrease the average TED and
in the third case that βj + αj = 0, changes in the covariate have no effect on liquidity resilience, as
measured by the TED.

6.4.2 Gamma mean and variance functions in the GAMLSS framework

In the case of the Gamma model with a link function on g (µ(x)) = βTx, the mean and variance
function are given as follows:

E [τ |x] = µ(x) = exp

(∑
j

βjxj

)

Var [τ |x] = µ (x)σ (x) = exp

(
2
∑
j

βjxj + 2
∑
j

αjxj

)
.

We can therefore consider the influence of a unit change in a covariate under this model by con-
sidering the partial difference in the mean and variance functions given a change in say the j-th
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covariate given by

∂

∂xj
E [τ |x] = βj exp

(∑
j

βjxj

)
∂

∂xj
Var [τ |x] = 2 (βj + αj) exp

(
2
∑
j

βjxj + 2
∑
j

αjxj

)
.

We see from this analysis that a unit change in the variable xj when βj > 0 results in an increase
in the average TED, as well as an increase in the variance in the variance of the TED βj + αj > 0.

6.4.3 Weibull and Generalised Gamma mean and variance functions in the GAMLSS
framework

The Weibull distribution parameterised has mean and variance functions

E [τ |x] = µ(x) = exp

(∑
j

βjxj

)
,

V [τ |x] = µ2(x)

{
Γ

(
2

σ(x)
+ 1

)[
Γ

(
1

σ(x)
+ 1

)]−2

− 1

}
.

The generalised gamma distribution has mean and variance functions

E [τ |x] = µ(x)
Γ
(
θ + 1

ν

)
θ1/vΓ(θ)

,

V [τ |x] = µ2(x)
Γ(θ)Γ

(
θ + 2

ν

)
−
[
Γ
(
θ + 1

ν

)]2
θ

2
ν [Γ(θ)]2

.

We can obtain the partial difference in the mean and variance functions as in the lognormal
and Gamma cases above. However, the presence of the gamma functions makes the identification
of the partial contributions of unit changes in covariates to the mean and variance functions more
involved.

6.5 Interpretation

Since we have obtained model fits for every model subspace, and for every day in our dataset, we
can investigate the inter-day variation of the coefficients, as well as their magnitude and sign over
time. In Figure 10, we summarise these results for the best fitting model on each day. The plots
demonstrate for each model distribution assumption the following features: 1) the variation in each
coefficient in the link functions for µ and σ and 2) the coefficient sign, and thus its interpretation
with regards to how it influences these parameters, generally related to the resilience mean and
variance.

We note that the signs of the coefficients generally agree for the models under the different
distributional assumptions. In particular, the prevTEDavg covariate, which is an average of the last
5 log TED observations, and generally has a positive coefficient, is thus associated with a slower
return to the threshold liquidity level. Thus, our model indicates that the expected TED over a

21



particular threshold will be larger, when the duration of similar exceedances in the near past has
been longer. We also find that the instantaneous spread covariate (i.e. the value of the spread at
the moment when it first exceeds the threshold) appears frequently in the best model and has a
positive coefficient (and would also increase the expected TED). This results matches our intuition,
as the wider the spread just after an event at time Ti+, the longer we would expect the spread
exceedance to last, on average.

Of particular interest are the mobuy and mosell covariates, i.e. dummy variables indicating
whether the exceedance resulted from a buy or sell market order respectively (if both are zero,
then the exceedance was a result of a cancellation). For the majority of assets, such as Deutsche
Telekom, for which results are presented in Figure 10, the coefficients are generally found to be
negative, indicating that exceedances from market orders are associated with an decrease in the
expected TED, compared to cancellations. For a small number of assets, such as Credit Agricole
we have noted that the opposite effect is found.

7 Liquidity drought extremes

We present here an application of the model as a regulatory tool for the monitoring of liquidity.
Similar to the previous setting, we would expect that regulatory bodies are interested in ensuring
uninterrupted liquidity, as it is an integral part of a fair and orderly market. However, they would
probably focus on the extreme liquidity levels that occur, and the durations of these extreme events.

For this application, instead of the conditional mean response of the observation variable, we
now consider conditional quantiles of the response. That is, if a TED event occurs in a (stationary)
LOB regime, given covariates x, we can make a prediction about the (1 − α)-th quantile, eg. the
90th quantile of the response: This is the duration of time such that there is a 90% probability
under the model that liquidity will return to the threshold level in this period. To understand the
use of the model we developed in the manner of a quantile relationship, we explain briefly how
to reinterpret the GAMLSS regression model, specifically in the case of the generalised gamma
distribution family we adopt in this paper, as a quantile regression model structure, following the
developments discussed in Noufaily and Jones [2013].

In general when performing a quantile regression study, where one links the quantile behaviour
of an observed response variable, in our case the TED random variables for liquidity resilience, to a
set of covariates, it is achieved by either adopting a non-parametric or a parametric framework. The
most common approach is to consider the non-parametric quantile regression approach, where one
estimates regression coefficients without making assumptions on the distribution of the response,
or equivalently the residuals. If Yi > 0 is a set of observations and xi = (1, xi1, . . . , xim) is a vector
of covariates that describe Yi, the quantile function for the log transformed data Y ∗i = lnYi ∈ < is

QY ∗(u|xi) = α0,u +
m∑
k=1

αk,u xik (22)

where u ∈ (0, 1) is the quantile level, αu = (α0,u, . . . , αk,u) are the linear model coefficients for
quantile level u which are estimated by solving

min
α0,u,...,αm,u

∑
i≤I

ρu(εi) =
∑
i≤I

εi[u− I(εi < 0)] (23)

where εi = y∗i − α0,u −
m∑
k=1

αk,u xik. Then the quantile function for the original data is QY (u|xi) =

exp(QY ∗(u|xi)).
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It was realised by Koenker and Machado [1999] and Yu and Moyeed [2001] that the parameter
estimates of αu obtained by minimizing the loss function in (23) will be equivalent to the maximum
likelihood estimates of αu, when Y ∗i follows the Asymetric Laplace (AL) proxy distribution with
pdf:

f(y∗i |µi, σ2
i , p) =

p(1− p)
σi

exp

(
−(y∗i − µ∗i )

σi
[p− I(y∗i ≤ µi)]

)
(24)

where the location parameter or mode µ∗i equals to QY ∗(u|xi) in (22), the scale parameter σi > 0
and the skewness parameter p ∈ (0, 1) equals to the quantile level u. Since the pdf (24) contains
the loss function (23), it is clear that parameter estimates which maximize (24) will minimize (23).

In this formulation the AL distribution represents the conditional distribution of the observed
dependent variables (responses) given the covariates. More precisely, the location parameter µi of
the AL distribution links the coefficient vector αu and associated independent variable covariates
in the linear regression model to the location of the AL distribution. It is also worth noting that
under this representation it is straightforward to extend the quantile regression model to allow for
heteroscedasticity in the response which may vary as a function of the quantile level u under study.
To achieve this, one can simply add a regression structure linked to the scale parameter σi in the
same manner as was done for the location parameter.

Equivalently, we assume Y ∗i conditionally follows an AL distribution denoted by Y ∗i ∼ AL(µ∗i , σ
2
i , u).

Then
Y ∗i = µ∗i + ε∗iσi (25)

where ε∗i ∼ AL(0, 1, u), µ∗i = α0,u +
m∑
k=1

αk,u xik, σ
2
i = exp(β0,u +

ν∑
k=1

βk,u sik) and sik are covariates

in the variance function.
One could indeed consider the resulting ALD model as a GAMLSS model structure which is

interpreted as a quantile regression model also. However, there is another sub-class of models for
which one can develop a GAMLSS model that will also be associated with a quantile regression
structure, not necessarily in the ALD family. In this paper we consider again the generalised gamma
distribution family of GAMLSS structures and we observe that one can obtain the quantile function
of this family of models in closed form, which is again a form of quantile regession since it directly
relates the quantile function of the TED response to the covariates.

In particular if we consider that the TED responses are modelled according to the GAMLSS
regression structure under one of the available parameterizations discussed previously, such as the
Generalised Gamma distribution

fτ (τ ; b(x), a(x), k(x)) =
b

Γ(k)

τ bk−1

abk
exp

(
−
(τ
a

)b)
, k > 0, a > 0, b > 0 (26)

where we note that the parameters b, a, k can be made to be functions of the covariates x under
the GAMLSS structure. From this regression relationship, one can obtain the conditional quantile
function for a given quantile level u, as determined by Noufaily and Jones [2013]. Obtaining this
quantile function for the conditional response given the covariates, linked to the response through the
parameters, is achieved by representing the log generalized gamma distribution’s quantile function in
terms of a base quantile function, in this case given by a gamma distribution with specifically selected
shape and scale parameters. The required transformation of the analytic closed-form quantile
function of a Gamma random variable, denoted by G−1, with shape u and scale k(x), then gives
the conditional expression

Q (u;x) = a(x)

[(
1

k(x)

)
G−1 (u;u, k(x))

] 1
b(x)

, (27)
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where a(x), and we recall that this parameterisation corresponds to that of the gamlss package with

b = ν, a = µθ−
1
ν and k = θ, with θ = 1

σ2ν2
and where one or more of µ, σ, ν may be functions of x

since one or more of the parameters k, b, a can be made functions of the covariates x.
To start with, we obtain the conditional quantile level of the TED, assuming that covariates take

median intra-day values. The TED is defined as before, using the spread as the liquidity measure
and the median of the empirical distribution as the threshold. We then allow covariate prevTEDavg
to vary within a range of typical intra-day values and obtain the conditional quantile levels for the
four distributions we have considered in Figure 11. We note here that these quantile functions have
been obtained with model parameters from a GAMLSS structure, where we only considered the
link function pertaining to the first parameter. We can see that this structure separates the effects
of covariates and quantile levels on the quantile of the TED, as covariates only enter into parameter
a above.

Figures 12 and 13 show the quantile surface obtained when we allow two covariates to vary. We
note from Figure 13 that when both covariates prevTEDavg and spreads take extreme values, this
leads to a vast increase in the median TED level under our model for all distributional assumptions.

Such an analysis is useful in understanding how extreme levels of particular covariates affect
quantile levels of the TED. We can therefore understand how the different quantile surfaces for the
TED behave for these extreme values of the spread and above. This enables regulators to identify
which are the most important covariates associated with an increase in extreme periods of illiquidity
(that is, where the liquidity measure remains above the threshold for extended period of time). In
addition, to the extent that a covariate taking extreme values is considered a scenario in which the
LOB is stressed, a regulator can make inferences about the duration of relative illiquidity under
such stressed conditions.

In non-stressed conditions, that is, where covariates take what would be considered to be ‘normal’
values, regulators may be interested in the range of probable values of the TED. Obtaining high
quantile levels of the TED under the model could then help them identify situations which fall
outside this range, which may be due to a change in the LOB regime or due to a particular event
that will require their intervention.

8 Proposals and conclusion

Given the intra-day variation in liquidity demand, we propose that quoting requirements of Desig-
nated Market Makers / Designated Sponsors be amended so as to include a provision for liquidity
replenishment after a shock. We have shown that the Threshold Exceedance Duration (TED)Panayi
et al. [2014] is a good metric for the speed of this liquidity replenishment, and indeed it has been
defined so as to be able to incorporate any liquidity measure (e.g. spread, XLM) an exchange may
be interested in, and any liquidity threshold that would indicate that there is sufficient liquidity in
the asset. We do not suggest an explicit target for the TED for each asset, but we suggest that
this should vary according to the asset’s liquidity, as do current quoting requirements regarding
maximum spreads and minimum posted volumes.

We have presented a comprehensive study of different regression structures that could be used to
model the variation in the TED. An appropriate modelling structure would be invaluable for both
the operators of the exchange and the market makers who are subject to the quoting requirements.
The former, because they could use it to determine an appropriate target level of the TED, given
the prevailing conditions. The latter, because when they act to replenish liquidity, it is possible
that they have several options about the way in which they do it, and the model could prescribe
the method that would most improve resilience in market liquidity.

In our modelling we employed various regression structures, starting from simple log-linear
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models to Generalised Linear Models (GLMs) and GAMLSS models. Under these approaches, we
compared the explanatory power of Lognormal, Gamma, Weibull and Generalised Gamma models.
We also evaluated the additional explanatory power of allowing covariates to affect each of the
parameters of the distribution, as in the GAMLSS structure.

We determined that while the Generalised Gamma model had, in most cases, the highest ex-
planatory power of the distributions considered, its advantage over the Lognormal distribution was
minimal at best. In addition, considering also a link function for a second parameter in the model
increased explanatory power, but again the increase was perhaps not sufficient to justify the more
involved GAMLSS modelling approach. Summarising, a simple log-linear structure is, in our opin-
ion, the recommended approach to modelling the TED, as its estimation is very robust and its
explanatory power similar to much more flexible models, such as the Generalised Gamma model.

Name Symbol Country Sector
CREDIT AGRICOLE ACAp FRANCE Banking Services

ALLIANZ ALVd GERMANY Insurance
BAYER BAYNd GERMANY Biotechnology / Pharmaceuticals

BIC BBp FRANCE Commercial Services / Supplies
BMW BMWd GERMANY Automobiles / Auto Parts

DANONE BNp FRANCE Food / Tobacco
AXA CSp FRANCE Insurance

DAIMLER DAId GERMANY Automobiles / Auto Parts
DEUTSCHE BANK DBKd GERMANY Banking Services

JCDECAUX DECp FRANCE Media / Publishing
DEUTSCHE TELEKOM DTEd GERMANY Telecommunications Services

GROUPE EUROTUNNEL GETp FRANCE Rails / Roads Transportation
PUMA PUMd GERMANY Textiles / Apparel

HERMES INTL. RMSp FRANCE Textiles / Apparel
RENAULT RNOp FRANCE Automobiles / Auto Parts

SKY DEUTSCHLAND SKYDd GERMANY Media / Publishing
AXEL SPRINGER SPRd GERMANY Media / Publishing

TUI TUI1d GERMANY Hotels / Entertainment Services
UBISOFT ENTM. UBIp FRANCE Leisure Products

VOLKSWAGEN VOWd GERMANY Automobiles / Auto Parts

Table 5: Information about the 20 European stocks used in the study.
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Figure 4: The adjusted R2 values for models of using the best subsets of covariates (of size 1 to
24, in this case) for a single trading day (the 17th of January 2012) for stock Credit Agricole in
the lognormal specification and the median spread (top) or the 95th percentile (bottom) as the
threshold. Any one row corresponds to a submodel with the highlighted squares indicating whether
a variate has been included in the model or not. A dark square indicates statistical significance
at the 5% level, with light squares not statistically significant at the 5% level. For instance, row
M3 corresponds to a specification with the following variates: intercept, ask, prevTEDavg and
spreads. The models are ranked by the best adjusted R2 value, and we see that in this case, the
best scoring model is obtained using a subset of 15 covariates for the top plot. We differentiate
between covariates that were found to be significant or not, and of the 15 covariates in the best
model, only 8 are found to be significant at the 5% level.
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Figure 5: Heatmap of the relative frequency with which parameters appear in the best daily models
of every subspace (frequency in terms of the number of daily models over the 82 day period) for the
Credit Agricole dataset using the daily median (left) or the 95th percentile (right) of the spread as
the threshold value. So for instance, the element in row M11 and column lask indicates the relative
frequency (in terms of the fraction of days over the 82 day period) by which the variate lask has
appeared in the best model with 10 variates amongst all models with 10 variates. The bottom row
is not informative since by construction all variates appeared amongst the best model having all
variates.
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Figure 6: Heatmap of the relative frequency with which the parameters are found to be significant
at the 5% level (frequency in terms of the number of daily models over the 82 day period) for the
Credit Agricole dataset, using the median and 95th percentile thresholds.
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Figure 7: Boxplots of the adjusted R2 value obtained from fitting the regression models with
the various distributional assumptions separately for each day in our dataset for the threshold
corresponding to the 5th decile of the spread
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Figure 8: The deviance for every distributional assumption, with a model fit fit every day over an
81-day trading period.
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Figure 9: Boxplots of the adjusted R2 value obtained from fitting the lognormal regression model,
comparing the explanatory power when relating only a single distribution parameter µ to covariates,
and when relating both µ and σ in a GAMLSS framework, for four different assets. (Top left): Credit
Agricole SA. (Top right): Bayer AG. (Lower left): UBISOFT Entertainment. (Lower right): TUI
AG.
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Figure 10: Boxplots of the model coefficients obtained from fitting the regression models with
the various distributional assumptions separately for each day in our dataset for the threshold
corresponding to the median spread for stock Deutsche Telecom (stock symbol DTEd). (Top):
Lognormal. (Middle): Gamma. (Bottom): Weibull. Left: Considering link function for µ only.
Right: Considering link function for µ and σ.

33



0

50

100

150

200

250

−2 0 2 4 6
prevTEDavg

T
hr

es
ho

ld
 E

xc
ee

da
nc

e 
D

ur
at

io
n 

(m
s)

factor(quantile)
0.25
0.5
0.75

0

50

100

150

200

250

−2 0 2 4 6
prevTEDavg

T
hr

es
ho

ld
 E

xc
ee

da
nc

e 
D

ur
at

io
n 

(m
s)

factor(quantile)
0.25
0.5
0.75

0

50

100

150

200

250

−2 0 2 4 6
prevTEDavg

T
hr

es
ho

ld
 E

xc
ee

da
nc

e 
D

ur
at

io
n 

(m
s)

factor(quantile)
0.25
0.5
0.75

0

50

100

150

200

250

−2 0 2 4 6
prevTEDavg

T
hr

es
ho

ld
 E

xc
ee

da
nc

e 
D

ur
at

io
n 

(m
s)

factor(quantile)
0.25
0.5
0.75

Figure 11: Quantile plots: Upper left: Lognormal. Upper right: Gamma. Lower left: Weibull.
Lower right: Generalised gamma.
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Figure 12: Quantile plots for lognormal,gamma,weibull and generalised gamma when varying 2
covariates.
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Figure 13: Quantile plots for lognormal,gamma,weibull and generalised gamma when varying 2
covariates.
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