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Abstract

We characterize the partial orderings induced by the most common
risk measures and compare them to the partial orderings induced by
first and second order stochastic dominance, respectively. We show
which risk measures are consistent in the sense that they induce the
same partial orderings as stochastic dominance. We also demonstrate
which risk measures exhibit the property that stochastic dominance
among risky choices imply consistency, and whether the reverse is true.
Finally, we find that tail conditional expectation does not meet these
consistency criteria.
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1 Introduction

A consequence of the many risk measures in common usage is that they may
provide conflicting guidance for selection among investment choices. Con-
sensus of how to discriminate among risk measures is lacking. In contrast,
the academic literature has long agreed that maximisation of expected util-
ity functions, and the stochastic dominance criteria related to utility, lead to
appropriate decision rules. Our objective is to formally apply the stochastic
dominance criteria to risk measures in common usage. Specifically, we inves-
tigate whether each risk measure leads to the same ordering of investment
choices as first and second order stochastic dominance, respectively.

Spurned on by financial supervisors, the financial industry employs statistical
risk measures to evaluate the riskiness of investments motivated by the desire
to measure risk without necessarily having to model the underlying distribu-
tion of financial returns. Based on historical observations of returns, these
risk measures offer summary statistics describing returns, such as a quan-
tile (i.e., Value-at-Risk, VaR) and various forms of conditional expectations
of extreme events, of which expected shortfall is one of many alternatives.
Obviously, when used to rank alternative investment choices, different risk
measures may provide conflicting advice.

Similarly, different utility functions can lead to different investment deci-
sions. However, when investment choices can be ranked using stochastic
dominance criteria, the preferred investment choice would remain the same
for a large class of utility functions. Specifically, first (second) order stochas-
tic dominance of one random payoff over another is equivalent to saying that
any investor with non-decreasing (concave) utility prefers the former.1 We
relate common risk measures to expected utility maximization through the
stochastic dominance criteria.

Consider two random variables X and Y , X first and second order stochasti-
cally dominates Y , denoted by XfsdY and XssdY , respectively.2 Further,
we say that X is less risky than Y , denoted by XlrY if XssdY and the

1This first order stochastic dominance result is originally due to Quirk and Saposnik
(1962) and Hanoch and Levy (1969) for compact random payoffs. In subsequent work,
Brumelle and Vickson (1975) and Tesfatsion (1976) extended these results to unbounded
random variables provided an integrability condition is satisfied. The second order stochas-
tic dominance result is originally from Hanoch and Levy (1969) and Rothschild and Stiglitz
(1970). The more general case of random payoffs with unbounded support requires an-
other integrability condition, see Tesfatsion (1976). Throughout this paper we assume
that both integrability conditions obtain.

2Formally, let F denote the distribution function. Then XfsdY , if FX(z) ≤
FY (z) ∀z, where z ∈ S ⊆ R. Further, XssdY , if
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random variables have the same mean. Below, we denote by XsdY that X
stochastically dominates Y , where sd is either fsd, ssd or lr.

The partial ordering induced by LR is particularly useful in our setting for by
controlling for the mean, it solely compares the “risk” of X and Y , whereas
the concept of ssd may involve an amalgamation of both risk and expected
return considerations. LR has been introduced in the seminal paper by Roth-
schild and Stiglitz (1970). When comparing X and Y with different means,
for risk comparison purposes one can always add the right amount of the
riskless asset to the asset with the lower mean and then compare them using
lr. So while ssd is more general in principle, for risk comparisons lr may
be more useful.

We next introduce three definitions of consistency. A risk measure ρ is

sd>consistent if XsdY then ρX ≤ ρY

sd<consistent if ρX ≤ ρY then XsdY

sd-consistent if ρ is both sd>consistent and sd<consistent.

Risk measures can be parameterized by a variable π ∈ Π, typically a reference
point such as a cutoff quantile or probability level, in which case ρX ≤
ρY means ρX(π) ≤ ρY (π), all π ∈ Π. Further, we say that ρ is partially

sd>consistent if XsdY implies ρX(π) ≤ ρY (π) over a subset of Π.

Of our three notions of consistency, sd<consistency is of great importance
to financial institutions. Suppose a risk manager relies on some risk measure
ρ which is not sd<consistent. Even though he might be confident that X
is less risky than Y for a large set of reference points, say all of Π, and that
E[X] = E[Y ], he would nevertheless not be able to conclude that the owners
would necessarily agree with his choice of X over Y . For sd<consistent ρ he
would have that assurance.

A major motivation for studying sd>consistency of risk measures is the large
and growing literature on risk measures as decision tools in asset allocation.
Markowitz (1959), among many others, use the standard deviation, σ, as
risk measure such that µ − σ defines the efficient set, µ being the mean.
The idea is to replace the standard deviation by another risk measure, ρ,
and investigate the µ − ρ efficient set. For example, Kaplanski and Kroll
(2002) study the µ − VaR and µ − ES efficient sets, where ES is expected

∫ q

−∞

FX(z)dz ≤

∫ q

−∞

FY (z)dz, ∀q ∈ S (1)
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shortfall. A portfolio is a member of this efficient set iff it is not dominated
by any other porfolio (i.e. any other portfolio having lower ρ risk also has
lower expected payoff). Establishing that ρ is sd>consistent is equivalent
to establishing that the µ − ρ efficient set is a subset of the sd efficient set.
In other words if a portfolio is efficient by the µ − ρ criterion, then it also
is efficient by the sd criterion. This would indicate that portfolio allocation
by a µ − ρ criterion should only be attempted with risk measures that are
sd>consistent.

We consider the following risk measures: Value–at–Risk (VaR) , tail con-
ditional expectation (TCE) (or “TailVaR”), expected shortfall (ES), lower
partial moments (LPM) of the zeroth (ZLPM), first (FLPM) and second
order (SLPM) (see Bawa, 1975), as well as the Omega function (Keating
and Shadwick, 2002).3 First, we show that ZLPM and VaR are fsd-
consistent. Second, we demonstrate that FLPM, SLPM, ES and Omega
are fsd>consistent, but not fsd<consistent. Third, we show that TCE

is neither fsd>consistent nor fsd<consistent. These findings extend Fish-
burn (1977) who shows that LPM retains a fsd>consistent ordering and
Kaplanski and Kroll (2002) who provide sufficient conditions such that VaR

is fsd>consistent.

Fourth, we show that for arbitrary distributions, ES, Omega and FLPM

are lr-consistent. In contrast, standard deviation, SLPM, ZLPM, VaR

and IQR are lr>consistent, but not lr<consistent, with ZLPM and VaR

partially below the first crossing point only and with IQR under some condi-
tions. For two-parameter distributions, the standard deviation, IQR and β
are lr-consistent. Again, TCE is neither lr>consistent nor lr<consistent,
unless the distribution functions satisfy certain continuity conditions.4 The
last finding would suggest that TCE is best avoided since it fails all consis-
tency criteria as well as coherence.

2 Risk measures

This paragraph introduces the notation. Suppose that X and Y are two risky
asset returns with distribution functions FX and FY respectively. A point of
discontinuity corresponds to a point with strictly positive mass. The upper
p-quantile qX(p) is defined as sup{x : FX(x) ≤ p}. The lower p-quantile is

3ES is a generalization of TCEX := −E[X |X ≤ −VaRX ] due to Acerbi and Tasche
(2002) which restores coherence of the risk measure in the sense of Artzner et al. (1999).

4Yoshiba and Yamai (2002) show lr>consistency when distribution functions admit
densities.

4



the generalized inverse function F̃−1
X (p) := inf{x : FX(x) ≥ p}. If X and Y

are integrable, X and Y have expected values µX = E[X] =
∫

R
xdFX(x) and

µY = E[Y ] =
∫

R
ydFY (y). If second moments exist, we denote by σX and σY

the standard deviations of X and Y respectively.

Dhaene et al. (2003) classify risk measures based on whether they consider
the entire set of outcomes, referred to as overall risk measures, or only the
tails, the so-called downside risk measures. A risk measure is any mapping
from the relevant space of financial risk to the real line.

Among the overall risk measures, we distinguish:

1. Variance σ2
X (provided X ∈ L2), is given by

σ2
X :=

∫ ∞

−∞

(x − µX)2dFX(x)

2. Market risk βX is given by

βX := ρX,R

σX

σR

where σR is the standard deviations of the market portfolio R and ρX,R

is the correlation coefficient between X and R.

3. The interquartile range (IQR) measure reads

IQR = qX(3/4) − qX(1/4)

The IQR measure is sometimes used as a measure of overall risk when the
second moment is not bounded. For example, for symmetric α-stable distri-
butions with 1 < α < 2 the standard deviation does not exist, but the scale
can be captured by IQR (Fama and Roll, 1968).

Among the downside risk measures, we consider:

1. Second Lower Partial Moment (SLPM) is defined as5

SLPM(q) :=

∫ q

−∞

(q − x)2dFX(x) = 2

∫ q

−∞

(q − x)FX(x)dx

assuming that
∫ 0

−∞
x2dFX(x) < ∞.

5The second equality follows from integrating by parts, using the fact that
∫ 0

−∞
x2dFX(x) < ∞ implies limx→−∞ x2FX(x) = 0 and the fact that

∫ 0

−∞
x2dFX(x) < ∞

implies that
∫ 0

−∞
xdFX > −∞, which in turn implies that limx→−∞ xFX(x) = 0.
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2. First Lower Partial Moment (FLPM):

FLPM(q) :=

∫ q

−∞

(q − x)dFX(x) =

∫ q

−∞

FX(x)dx

where the equality follows again from integration by parts, provided
∫ 0

−∞
xdFX > −∞.

3. Zeroth Lower Partial Moment (ZLPM):

ZLPM(q) :=

∫ q

−∞

dFX = FX(q)

4. Value-at-Risk (VaR): If the ZLPM(q) is fixed at p, then the negative
of the upper quantile gives the Value-at-Risk as

VaRX(p) := −qX(p)

VaR is defined as the maximum potential loss to an investment with
a pre-specified confidence level (1 − p).

5. Tail Conditional Expectation (TCE) at the confidence level (1−p) < 1
is defined as

TCEX(p) := −E[X|X ≤ −VaRX(p)]

= −

∫ qX(p)

−∞

z
dFX(z)

FX(qX(p))
= −qX(p) +

1

FX(qX(p))

∫ qX(p)

−∞

FX(z)dz

The last equality (provided p > 0 and
∫ 0

−∞
xdFX > −∞) follows from

integration by parts. Some authors and most practitioners call this risk
measure “expected shortfall” (ES). We follow Artzner et al. (1999) by
calling it TCE and follow Acerbi et al. (2001) by reserving the term
ES for the following variant.

6. Expected Shortfall (ES) at the confidence level (1 − p) < 1 is defined
as

ESX(p) := −
1

p

(

∫ qX(p)

−∞

zdFX(z) − qX(p)[FX(qX(p)) − p]
)

= TCEX(p) +
FX(qX(p)) − p

p
[TCEX(p) − VaRX(p)]

= −
1

p

∫ p

0

F̃−1
X (z)dz
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The last equality is due to Acerbi and Tasche (2002)6 who also show
that ESX is in fact identical to the risk measure known as “Con-
ditional Value-at-Risk.” Notice that when FX is continuous, then
FX(qX(p)) = p and ES and TCE coincide.7 If on the other hand
FX is not continuous and p 6∈ FX(R), then by definition of qX(p) the
event {X ≤ qX(p)} has probability FX(qX(p)) > p, in which case TCE

might violate subadditivity. To ensure subadditivity (and consistency,
as we show later), the relevant amount has been substracted, and some
authors (e.g. Acerbi and Tasche (2002)) reserve the term ES for this
subadditive transformation of TCE, as we do here. Also, notice that
ESX(p) ≥ TCEX(p).

7. Omega: (Ω) is a risk measure8 defined as (with the obvious adjustments
if the denominator is zero)

ΩX(q) :=

∫ q

−∞
FX(z)dz

∫ ∞

q
(1 − FX(z))dz

3 Risk measures and first order stochastic

dominance

It is well–known that XfsdY implies that µX ≥ µY , and that the converse is
not true in general. The case for a risk measure to satisfy fsd>consistency
is therefore weak since fsd is a much stronger concept that goes beyond risk
and pertains to expected returns also. It is also well-known that XfsdY
does not lead to an unambiguous ordering between assets with respect to
any of the overall risk measures. One would, however expect to be able
to say something about the fsd>consistency of downside measures because
less downside risk tends to mean more upside risk, which is of relevance to a
non–satiated investor.

Some results on downside measures already exist in the literature. From
Fishburn (1977) and Kaplanski and Kroll (2002), we know that the or-
dering of investment choices with respect to SLPM, FLPM, ZLPM and

6These authors also show that ES is not quantile dependent in the sense that in the
definition of ES, the upper quantile qX(p) can be replaced by any α ∈ [F̃−1

X (p), qX(p)]
without affecting the function ES.

7More generally, ES and TCE coincide iff for each p ∈ [0, 1], either FX(qX(p)) = p or
P(X < qX(p)) = 0.

8Due to Keating and Shadwick (2002), Omega has originally been designed as the

performance measure
R

∞

q
(1−FX(z))dz

R

q

−∞
FX (z)dz

, balancing upside potential and risks.
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VaR is fsd>consistent. fsd<consistency of ZLPM and VaR can be found
in Föllmer and Schied (2002). We complement these results by deriving
fsd−consistency for ES and Omega, by showing that TCE is neither fsd>consistent
nor fsd<consistent. Finally we completely characterize consistency of global
risk measures for two-parameter distributions. The statement TCEX ? TCEY

means that for arbitrary distribution functions we are neither assured that
TCEX ≤ TCEY nor the other way around, and that there are cases of
FX and FY whereby TCEX(p) < TCEY (p) for some p and TCEX(p) >
TCEY (p) for other p. All proofs are relegated to the appendix.

Proposition 1 Regardless of the distributions of X and Y , the following

statements are equivalent:

1. XfsdY

2. ZLPMX ≤ ZLPMY

3. VaRX ≤ VaRY

If XfsdY then the following inequalities hold, while the converse is false:

SLPMX ≤ SLPMY (2)

FLPMX ≤ FLPMY (3)

ESX ≤ ESY (4)

ΩX ≤ ΩY (5)

TCEX ? TCEY (6)

TCE may therefore be neither coherent (Artzner et al. (1999)) nor fsd>consistent,
while ES is both coherent and fsd>consistent.

Much of actual asset allocation and performance evaluation in wealth man-
agement is still performed under the simplifying assumptions of two-parameter
return densities over the entire real line. The following proposition is useful
in further characterizing fsd in such a world:

Proposition 2 Assume now that X and Y are such that FX(x) = FY (y)
whenever x−µX

σX

= y−µY

σY

. Also, assume that FX and FY admit strictly positive

densities over R. The following statements are equivalent:

a. XfsdY

b. σX = σY and µY ≤ µX

c. IQRX = IQRY and µY ≤ µX
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4 Risk measures and second order stochastic

dominance

In this section we compare orderings induced by the risk measures to the ssd

ordering. The following equivalence results can be shown:

Proposition 3 The following are equivalent:

1. XssdY

2. ESX ≤ ESY

3. FLPMX ≤ FLPMY

The following are equivalent:

a. XlrY

b. ESX ≤ ESY and µX = µY

c. FLPMX ≤ FLPMY and µX = µY

d. ΩX(q) ≤ ΩY (q) iff q ≤ µ := µX = µY

The risk measures ES and FLPM generate an ordering of investment choices
equivalent to lr, provided the means are set equal (possibly by adding or
substracting the right amount of riskless prospect). In fact, ES and FLPM

generate the same ordering as ssd. The ordering generated by Ω highlights
a possible weakness of the Ω measure, which is that orderings between two
investment choices are necessarily reversed at their common mean. This
cautions against the use of the Ω ranking as an overall preference relation,
unless the given sign adjustment is performed.

Denote the first crossing quantile of the two distribution functions by q̄.
More precisely, q̄ satisfies FX(z) ≤ FY (z) for z < q̄, FX(q̄) ≥ FY (q̄) and
FX(z) > FY (z) for z ∈ (q̄, q̄ + ǫ) for some ǫ > 0, and there is no smaller such
crossing quantile. If there is no crossing, the results of fsd apply and we set
q̄ = ∞. If there are multiple crossings but no first crossing, set q̄ = −∞.
Define p̄ := FY (q̄).

Not all risk measures are ssd- or lr-consistent, some are ssd> or lr>consistent
only, with known counterexamples to the converse:
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Proposition 4 Suppose that XssdY . Then regardless of the distribution of

X and Y , the following relationships hold while while the converse is false:

SLPMX ≤ SLPMY (7)

ZLPMX(q) ≤ ZLPMY (q), ∀q < q̄ (8)

VaRX(p) ≤ VaRY (p), ∀p < p̄ (9)

ΩX ≤ ΩY (10)

TCEX ? TCEY (11)

Suppose now that XlrY , then the following relationship holds while the con-

verse is false:

σX ≤ σY (12)

Assume that XlrY , that p̄ ∈ [1/4, 3/4] and that no other crossing point is

in [1/4, 3/4]. Then

IQRX ≤ IQRY (13)

Starting with Porter (1974), a large literature investigates the consistency of
σ, including distribution classes for which σ is not consistent. lr>consistency
(and the fact that lr<consistency can fail) of SLPM is due to Porter (1974).
The downside risk measures ZLPM and VaR retain partial lr>consistent
ordering of assets under arbitrary asset returns distributions, partial meaning
below the first crossing quantile of the two distributions. We know VaR

and ZLPM are equivalent to fsd. VaR is therefore both coherent and
consistent in the tail, provided there is a first crossing point. For ZLPM and
VaR, we have a reversal of the ordering immediately to the right of the first
crossing points. TCE is not in general lr>consistent, unless more is known
about distributions, such as continuity. In conjunction with Proposition 3
we have established that Ω is lr-equivalent and ssd>consistent, but not
ssd<consistent. That IQR is ssd<consistent is false even if we assume
equal means.

We now introduce the overall risk measure beta. In practice, investment man-
agers often do not choose not between the risks of two stand-alone projects,
but instead between the risks of two investment choices that have themselves
repercussions on the risk of an existing portfolio of assets. We have two
interpretations in mind. First, assume that the market with return R is
held by a well-diversified risk averse investor who then ranks the investment
choices R + X versus R + Y . We say that XlrβY if (X + R)lr(Y + R)
and if σX = σY , equivalently, if any well-diversified risk averse expected
utility maximizer prefers X to Y for equal variances. The idea is that a
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well-diversified investor, when choosing between two investment choices with
the same first two marginal moments, chooses the investment choices that
lowers the overall risk of his entire portfolio. As the proposition below shows,
this is indeed equivalent to the systematic risk of X –its beta βX– being less
than the systematic risk of Y . For the second interpretation, assume that
investment choices X and Y have equally volatile idiosyncratic components
ǫX and ǫY respectively, where X = αX + βXR + ǫX , E[ǫXR] = E[ǫX ] = 0,
and similarly for Y . Then we say that Xlr′

βY if XlrY and if σǫX
= σǫY

, i.e.
if any risk averse investor prefers, for identical idiosyncratic risk, the asset
with least systematic risk. For the two-parameter environments we can show
the following:

Proposition 5 Assume that X and Y are such that µX = µY and that

FX(x) = FY (y) whenever x−µX

σX

= y−µY

σY

, and that |q̄| < ∞. The following are

equivalent:

1. XlrY

2. σX ≤ σY

3. IQRX ≤ IQRY

Finally, are equivalent:

a. XlrβY

b. βX ≤ βY and σX = σY

as well as

i. Xlr′
βY

ii. βX ≤ βY and σǫX
= σǫY

For two-parameter families, the risk measures σ, the IQR and β (with the
additional restrictions) are ssd−equivalent, provided the means are equal-
ized. The relative usefulness of the various risk measures then lies in their
orderings of investment choices where neither is lr relative to each other,
for instance where a chosen threshold reflects the behavior of some relevant
utility function.
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5 Conclusion

Risk measures are generally evaluated using a variety of desirable attributes
including consistency, practicality (ease of implementation) and coherence.
The use of different attributes can lead to opposing arguments regarding a
risk measure. For example, VaR is relatively easy to implement but can
violate consistency and coherence. This paper focuses on the consistency
attribute. For the major risk measures used in practice, we extend Kaplanski
and Kroll (2002) and characterize consistency with common characteristics
of expected utility maximization, such as first and second order stochastic
dominance.

One avenue for future work is to consider other characteristics of utility
functions, such as third and higher order stochastic dominance (Eeckhoudt
and Schleisinger, 2006, offer economic interpretations). Another avenue is to
characterize what risk measures exhibit multiple desirable attributes, such
as both consistency and coherence. Some interesting results along these lines
are reported in Kusuoka (2001), De Giorgi (2005) and Leitner (2005).

A Appendix: Proofs

Proof of Proposition 1 The equivalences of 1, 2 and 3 are well-known,
see Föllmer and Schied (2002).

Relationships (2) and (3) follow from Fishburn (1977). Notice that if FY (z) ≥
FX(z) all z, then {z : FX(z) ≥ p} ⊆ {z : FY (z) ≥ p}, so that the infima
satisfy F̃−1

X (p) ≥ F̃−1
Y (p). Therefore ESY (p) − ESX(p) = −1

p

∫ p

0
[F̃−1

Y (z) −

F̃−1
X (z)]dz ≥ 0, as required for (4).

As to (5), Omega is consistent since ΩX ≤ ΩY iff
[
∫ ∞

q

[1 − FX(z)]dz

] [
∫ q

−∞

FY (z)dz

]

≥

[
∫ ∞

q

[1 − FY (z)]dz

] [
∫ q

−∞

FX(z)dz

]

.

By fsd, the first term on LHS is larger than the first term on the RHS, and
the same holds for the second term.

In order to prove (6), it is sufficient to provide an example whereby XfsdY
and yet TCEX(p) > TCEY (p) for a range of p’s and TCEX(p) < TCEY (p)
over some other range. Obviously, the example must be based upon discontin-
uous distributions, so we choose trinomial random variables with realizations
in {0, q, 1}. Consider the parameters 0 < η < π < 1 and 0 < q < 1. FY (z) =
10≤z<qη + 1z≥q and FX(z) = 10≤z<qη + 1z∈[q,1)π + 1z≥1, so XfsdY (strictly).
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First, pick p ∈ (η, π). We have qX(p) = qY (p) = q, FX(qX(p)) = π and
FY (qY (p)) = 1. TCEY (p)−TCEX(p) = −q+q+qη− 1

π
qη = (1−π−1)qη < 0.

Now choose p ∈ (π, 1). We have qX(p) = 1, qY (p) = q, FX(qX(p)) = 1 and
FY (qY (p)) = 1. TCEY (p) − TCEX(p) = −q + 1 + qη − (qη + (1 − q)π) =
(1 − π)(1 − q) > 0.

Proof of Proposition 2 That a ⇒ b can be seen as follows. Due to
XfsdY , for any z ∈ R, FX(z) ≤ FY (z) = FX(z′); with z′(z) := µX +
σX (z−µY )

σY

. Thus for any z ∈ R it holds that z ≤ z′ which is equivalent to

z
[

1 − σX

σY

]

≤ µX − σX

σY

µY . Since this must hold for all z ∈ R, we have

σX = σY and µY ≤ µX . From here, we also see that a ⇒ c. Now we
prove b ⇒ a. Assume σX = σY and µY ≤ µX . Then FY (z) = FX(z′) for
z′ = z + (µX − µY ) since σX = σY . So given any z, FX(z) ≤ FY (z) = FX(z′)
iff z ≤ z + (µX − µY ) iff µX − µY ≥ 0, so XfsdY .

Also, b ⇔ c. Recall that FY (z) = FX(z′) for z′ as above. Now qX(3/4) −
qX(1/4) = qY (3/4) − qY (1/4) iff qX(3/4) − qX(1/4) = (qX(3/4) − µX)σY

σX

+

µY − (qX(1/4) − µX)σY

σX

+ µY iff qX(3/4)
(

1 − σY

σX

)

= qX(1/4)
(

1 − σY

σX

)

. So

if qX(3/4) 6= qX(1/4), this is equivalent to σX = σY .

Proof of Proposition 3 That 1 ⇔ 2 follows from a result in Föllmer and
Schied (2002) (their Theorem 2.58) that says that XssdY is equivalent to
∫ p

0
F̃−1

X (z)dz ≥
∫ p

0
F̃−1

Y (z)dz, all p ∈ (0, 1], and so also to −1
p

∫ p

0
F̃−1

Y (z)dz ≥

−1
p

∫ p

0
F̃−1

X (z)dz, for all p ∈ (0, 1]. 1 ⇔ 3 is definitional.

Now turn to a ⇔ b. Notice that a repeated application of integration by
parts shows that E[X] = q +

∫ ∞

q
[1−FX(z)]dz−

∫ q

−∞
FX(z)dz for any q ∈ R.

This shows that ΩX ≤ ΩY iff
[
∫ q

−∞

FY (z)dz

]

(E[X] − q) ≥

[
∫ q

−∞

FX(z)dz

]

(E[Y ] − q)

which establishes the equivalence.

Proof of Proposition 4 Porter (1974) and Fishburn (1977) have estab-
lished (7). Inequalities (8) and (9) follow from the fact that below the first
crossing quantile FX(q) ≤ FY (q), and hence XfsdY below the first crossing
quantile so that Proposition 1 can be applied below q̄.

Inequality 10 relies on the fact that ΩX ≤ ΩY iff
(

∫ q

−∞
FY (z)dz

)

(E[X]−q) ≥
(

∫ q

−∞
FX(z)dz

)

(E[Y ]−q) for all q. So if XssdY then both items on the LHS
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are larger than the respective items on the RHS (recall that if XssdY then
E[X] ≥ E[Y ]: choose the utility function u(x) = x). The following is a coun-
terexample to the converse. Set 0 < η < π < 1 arbitrarily. Choose p > 0 ar-

bitrarily, choose p′ > pπ

π−η
> p and set p′′ > supq∈[p,p′)

{

q + (q−p)π(1−η)(p′−q)
qη(1−π)

}

.

Then assume X and Y are distributed as FX(z) = π1z∈[p,p′′) + 1z∈[p′′,∞) and
FY (z) = η1z∈[0,p′) + 1z∈[p′,∞). The choices of parameters above imply that
ΩX ≤ ΩY . Now choose q′ = λ pπ

π−η
+ (1 − λ)p′, with λ ∈ (0, 1). Then q′ > p

and q′ < p′. By construction,
∫ q′

−∞
FX(z)dz >

∫ q′

−∞
FY (z)dz, so X does not

ssd Y .

Relationship (11) can be shown in a similar vein to (6). We augment the
example given in that proof in order to ensure µX = µY for a stronger result.
The two random variables are now quadrinomial with distribution functions
FY (z) = 10≤z<qη + 1z∈[q,q′)κ + 1z≥q′ and FX(z) = 10≤z<qη + 1z∈[q,q′)π + 1z≥q′,
with parameters satisfying 0 < η < π < κ < 1 and realizations 0 < q < q′ <
1. First, we choose κ to ensure that µX = µY , equivalently that

∫ 1

0
[FY (z) −

FX(z)]dz = 0, i.e. κ = (1−q)−(1−π)(q′−q)
1−q

. It can be checked that always κ ∈

(π, 1). Clearly, XssdY . Now we show that for p ∈ (η, π) we have TCEY (p)−
TCEX(p) < 0 while for p ∈ (π, κ) we have TCEY (p) −TCEX(p) > 0. Pick
any p ∈ (η, π). Then qX(p) = qY (p) = q, FX(qX(p)) = π and FY (qY (p)) = κ.
It follows that TCEY (p) − TCEX(p) = (κ−1 − π−1)qη < 0. Finally, pick
p ∈ (π, κ). Then qX(p) = q′, qY (p) = q, FX(qX(p)) = FY (qY (p)) = 1. It
follows that TCEY (p) − TCEX(p) = (q′ − q)(1 − π) > 0.

Relationship (12) is an implication of the definition of lr (use utility function
u(x) = −x2) and inequality (13) is immediate.

Proof of Proposition 5 The results for the two parameter families are
shown as follows. The proof that σX ≤ σY is both necessary and sufficient
for lr if there is a crossing point is due to Hanoch and Levy (1969).

The equality σX ≤ σY ⇔ IQRX ≤ IQRY is shown as follows. Recall
that IQRX − IQRY = qX(3/4) − qX(1/4) − qY (3/4) + qY (1/4). Also, by
the assumption of belonging to the same two-parameter family, qY (p) =
µY + (qX(p) − µX)σY

σX

. Substituting this into the difference equation, we get

IQRX − IQRY =
(

1 − σY

σX

)[

qX(3/4) − qX(1/4)
]

.

The fact that both XlrβY and Xlr′
βY if βX ≤ βY and respective variances

are equal follows again from the above cited result in Hanoch and Levy
(1969). The converse is shown as follows. For the first interpretation, notice
that if (X +R)lr(Y +R), then σX+R ≤ σY +R, which in turn is equivalent to

βX ≤ βY +
σ2

Y
−σ2

X

2σ2

R

= βY . As to the second interpretation, XlrY implies that

14



σ2
X ≤ σ2

Y , i.e. β2
Xσ2

R +σ2
ǫX

≤ β2
Y σ2

R +σ2
ǫY

. With equal idiosyncratic variances,
the result follows.
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