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Abstract

We argue that most current methodologies for value-at-risk (VaR) under-
estimate the VaR, and are therefore ill-suited for market risk capital. Better
VaR methods are available, such as the tail–£tting method proposed here.
However, £nancial institutions may be reluctant to use those methods since
current VaR regulation may, perversely, provide incentives for banks to un-
derestimate VaR as much as possible.
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1. INTRODUCTION

1 Introduction

In January 1998 the amendment for market risks of the Basle Capital Accord will
become effective in the G-10 countries. The main change, compared to previous
capital adequacy regulations, is the option for banks to use their own internal mar-
ket risk management models, i.e. value-at-risk (VaR) models from which their
regulatory minimum capital against trading book losses is determined. In this ar-
ticle we point to several important facts, which we feel have been neglected in the
discussion about VaR models in general and the Basle internal models approach
in particular. We argue that the current set of Basle requirements still provides
disincentives for the development of more reliable VaR models, and show that
considerable improvement of current VaR models is possible by means of tech-
niques that explicitly focus on the properties of extreme return ¤uctuations. We
then brie¤y discuss how a change in the determination of the Basle ’multiplication
factor’ may encourage the industry to adopt improved VaR models, such as those
proposed here.

2 Traditional VaR models and extreme returns

VaR models usually use historical data to evaluate maximum (worst case) trading
losses for a given portfolio over a certain holding period at a given con£dence
interval. For example, a VaR model may tell you that a banks’ daily trading loss,
of 1 million dollars or more, will occur with 3% probability. A £rst important
observation is that value-at-risk applies to the extreme lower tail of the return
frequency distribution, i.e. large losses, far away from the mean. This fact is
recognized in the Basle market risk amendment, which speci£es the use of a one-
sided con£dence interval of 99 percent, i.e. the chance of experiencing a larger
loss than the value at risk should be 1 in 100 or less.

This number obviously re¤ects regulators’ natural tendency for conservative-
ness in their prudential supervision of banks. The same tendency also comes
out in the Basle regulators’ choice of holding period, a second important model
parameter. While the industry virtually unanimously uses daily VaRs for inter-
nal risk control, for the purpose of determining their minimum regulatory capital
against market risk, banks will be obliged to assume that they cannot liquidate
their trading portfolios quicker than within 10 business days. In order to facilitate
the transition from their internal daily VaR models to the regulatory 10-day mod-
els the application of a simple ’square-root-of-time’ rule is permitted. We shall
come back to this rule below, making the argument that - surprisingly - this may
lead to an over-estimation of the bi-weekly VaR.

The most dif£cult part in VaR estimations is the derivation of the portfo-
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2. TRADITIONAL VAR MODELS AND EXTREME RETURNS

lio return frequency distribution. Two approaches have become widely popular:
Variance-covariance analysis and historical simulation. Variance-covariance anal-
ysis relies on the assumption that £nancial market returns follow a multivariate
normal distribution. It is easy to implement, because the VaR can be computed
from a simple linear formula with variances and covariances of returns as the only
inputs. Its major drawback is that £nancial market returns are not normally dis-
tributed, having fatter tails than the normal. This means that losses are much more
frequent than predicted by variance-covariance analysis. It is particularly weak
where a VaR model for regulatory purposes and risk control should be strong, i.e.
in the prediction of large losses.

Another feature of many VaR models is the exponential weighing of past re-
turns, i.e. returns closer to the present are given more weight than those several
months or even a year ago. This technique is justi£ed by the presence of con-
ditional heteroscedasticity (CH) in daily £nancial market returns, meaning that a
volatile day is usually followed by volatile days. However, two important obser-
vations are relevant for the Basle minimum capital requirement discussion. First,
while daily returns exhibit strong CH effects, they can hardly be detected in bi-
weekly returns such as the regulatory 10-day holding period. Second, CH effects
largely originate from medium and small range volatility periods. Extreme events,
such as losses at or beyond a 99% con£dence interval, scatter rather independently
over time Danı́elsson and de Vries (2000). Jackson, Maude, and Perraudin (1997).

Historical simulation does not suffer from the tail-bias problem, because it
does not rely on normality. By applying the full empirical market return distribu-
tion to all the items in the current trading portfolio, the outcome exactly re¤ects
the historical frequency of large losses over the speci£c data window. Another
advantage of this approach compared to variance-covariance analysis is that it can
incorporate non-linear positions, such as derivative positions, in a natural way;
see Kupiec and O’Brien (1995a) on this ”full-valuation” property. The problem
with historical simulation is that it is very sensitive to the particular data window,
which the Basle Committee has chosen to be at least one year of past returns. In
other words, whether October 1987 is included or not makes a huge difference for
the value at risk predicted. Stated differently, the empirical return distribution is
very ’dense’ and smooth around the mean, so that no parametric model based on
a standard distribution, such as the normal, can beat the accuracy of the empirical
distribution there. Due to the few occurrences of extremely large price move-
ments, however, it becomes ’discrete’ in the tails. Hence, VaR predictions based
on historical simulation exhibit high variances. Moreover, at its lower end, the
empirical return distribution sharply drops to zero and remains there, i.e. more
severe losses in the future than the largest one during the past year is given a
probability of zero, which might be considered as imprudent.

Our interim conclusion is that a good value-at-risk model to satisfy regulatory
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3. A NEW APPROACH BASED ON EXTREME-VALUE THEORY

minimum capital standards should correctly represent the likelihood of extreme
events by providing smooth tail estimates of the portfolio return distribution which
extend beyond the historical sample (up to in£nity). Exponential or other weigh-
ing schemes need not be adopted. In what follows we shall sketch a new VaR
model which satis£es these requirements by combining historical simulation for
the interior of the portfolio return distribution with a parametric estimator for the
tails.

3 A new approach based on extreme-value theory

Our predictions for tail events will be based on the well documented fact that
asset return data have fatter tails than the normal. All heavy-tailed distributions
eventually display the same tail behavior when we consider large losses or gains.
Heavy-tailed distributions all have tail shapes which to a £rst order approximation
are identical to the tail shape of the Pareto distribution. Thus if we know that
the distribution is heavy tailed, then the largest losses occur with the following
approximate probability:

Pr {R < −r} = F (−r) ≈ ar−α, as r → ∞ (1)

The tail probabilities depend on two parameters, a scaling constant a, and the
so called tail index α. (1) shows that the smaller the tail index is, the more likely
are extreme events and the fatter are the tails. Statistical extreme value theory
provides the tools for estimating these tail parameters. Danı́elsson and de Vries
(2000) and Danı́elsson and de Vries (1997) for a more detailed description of the
theory and applications.) We have estimated these parameters for a number of
return data series.

In two interesting contributions in this journal, Boudoukh, Richardson, and
Whitelaw (1995) and Bahar, Gold, and Pilizu (1997) argue that VaR should fo-
cus on the worst case scenario by means of studying the distribution of the min-
imum return out of a number of n returns. This distribution is known to be
−F [1 − F (−r)]n, and can be computed if the underlying distribution F (−r)
is given. Interestingly, what these articles did not recognize is, that if n becomes
large, then the distribution of the minimum converges to a limit distribution which
is known a priori (the so-called extreme value distribution). If the data are fat
tailed then the leading term in a Taylor expansion of this extreme value distribu-
tion is given by (1). Thus our approach genuinely takes care of the worst case
scenario, but does not require prior knowledge of the speci£c distribution.

In order to illustrate the differences between the tail estimation technique and
other methods for VaR inference, such as variance-covariance analysis and pure
historical simulation, a particularly volatile asset class is used, i.e. daily returns
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3. A NEW APPROACH BASED ON EXTREME-VALUE THEORY

on spot oil prices from 1986 to 1997. By applying the method of Danı́elsson
and de Vries (1997) we can predict from the derived tail probabilities that the
maximum expected one-day drop in oil prices during a period of 15 years is 28%,
and that a drop of 44% is expected once every 70 years. In a single year we expect
one day where prices increase by 10%, on average.

Figure 1: Lower Tail of Daily Oil Prices 1992-1997
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The Figure illustrates a subsample of the results from 1992 to 1997. It shows
the results from three different techniques for VaR estimation; historical simula-
tion, variance-covariance methods, and extreme-value analysis. The step function
gives the empirically realized losses on the horizontal axis with the frequency of
losses on the vertical axis and re¤ects the results one would obtain from using
historical simulation. (The smaller window gives the entire empirical cumula-
tive distribution function.) The dotted line plots the estimated tail probabilities.
The Figure clearly illustrates how the tail estimator smoothes the distribution of
extreme returns. Moreover, the curve extends ’beyond the sample’ (to the left),
allowing evaluation of the frequency and magnitude of losses for a much larger
time interval than we have data for. It is instructive to compare this with the losses
predicted by variance-covariance analysis, which is indicated by the dashed line.
This curve is located way below the other two, in the southeast corner. Clearly,
the normality assumption leads to a substantial under-estimation of VaR. For ex-
ample, the normal distribution predicts a 13 times lower probability for a 6% drop
of the oil price than the estimated tail distribution.

Danı́elsson and de Vries (2000) compare the performance of various VaR pre-
diction methods for simulated portfolios of US stocks over a 4-year period. A
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4. SURPRISES FROM TIME AGGREGATION

Table 1: Performance of Different VaR Models (1000 day horizon)

Con£dence level 95% 99% 99.95%
Expected number of VaR violations 50 10 0.5
Average number of realized VaR violations (percentage error in parenthesis)
Variance-Covariance Approach 52.45 16.28 3.55

(4%) (63%) (610%)

Historical Simulation 43.24 7.66 0
(-14%) (-23%) (-100%)

Tail Estimator 43.14 8.19 0.59
(-14%) (-18%) (18%)

Note: Models tested with 500 random portfolios comprising 7 US stocks for the period 1993 through 1996.

subset of the results is shown in the Table, which compares the expected num-
ber of VaR violations for three different con£dence intervals with those actually
realized in the simulations. For example, for the Basle 99% con£dence inter-
val, 10 violations are to be expected; the variance-covariance approach gave on
average 16 violations, while for the tail estimation approach the actual portfo-
lio loss exceeded the predicted value at risk in only 8 cases. For the 95% level
the variance-covariance method performs best with 4% error, but as the con£-
dence level increases the performance of this method steadily worsens, e.g. at
the 99% con£dence level the error is over 60%. Historical simulation has mixed
performance; it provides reasonable predictions at the lower con£dence levels,
but it worsens with higher levels and becomes uninformative at the out-of-sample
99.95% con£dence level. Note that the tail estimator still provides a remarkably
good estimate at that level.

4 Surprises from time aggregation

As has been pointed out before Kupiec and O’Brien (1995a), the simple ’square-
root-of-time’ formula to aggregate daily VaR estimates to bi-weekly estimates
can be rather imprecise when returns of the underlying market risk factors are
non-normal. This has led to concerns among regulators that the simple time-
aggregation rule can easily lead to an under-estimation of potential losses and
therefore to too little capital against market risk, suggesting a more stringent reg-
ulatory approach.

We rather come to the opposite conclusion and argue that the square-root for-
mula may lead to an over-estimation of value at risk, when returns are not nor-
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5. INCENTIVES AND THE BASLE MULTIPLICATION FACTOR

mally distributed and exhibit fat tails. Assume that observed £nancial market
returns r have £nite variance. This implies that the tail index α is larger than 2 in
(1). Let t denote the length of the holding period. Increasing the holding period t
increases the VaR under the normal model by a factor of 2

√
2(’square-root-of-time

rule’). If the return distribution is fat tailed, then this factor equals α
√

2, and since
α > 2, 2

√
2 > α

√
2 . Hence the ’square-root-of-time’ rule eventually results in a

higher VaR than the value implied by a heavy tailed distribution. This result fol-
lows from equation (1) and is a direct implication of the linear tail additivity of fat
tailed distributed random variables, and the self-additivity of normally distributed
variables. (See e.g. Dacorogna, Muller, Pictet, and de Vries (1999) for further
details.)

In sum, by prescribing the ’square-root-of-time’ rule for time-aggregation reg-
ulators have - consciously or unconsciously - introduced another element of con-
servativeness in the internal models approach to market risk capital requirements,
which has passed widely unnoticed.

5 Incentives and the Basle multiplication factor

The regulatory requirement that banks’ 10-day, 99 % VaR estimate has to be mul-
tiplied by a factor of at least 3 to determine the minimum regulatory capital against
market risk has received a cool reception by the industry. National bankers asso-
ciations argued that such a high factor would discourage the application of quan-
titative models and obstruct progress in risk management techniques Elder£eld
(1995). For example, even when applying the tail estimation approach proposed
above, which is clearly much more precise than more widely known standard ap-
proaches, a bank could not be granted a lower factor than 3. Nevertheless, the
Basle Committee has con£rmed in December last year that it will retain the size
of the factor. In addition, this factor can be increased through a variable add-on
between 0 and 1 depending on the performance of a bank’s 1-day model in back-
testing procedures. The Basle Committee points out that the variable component
provides for built-in incentives to develop and use better models. However, we
would argue that the £xed component of 3 is already so high that it completely
dominates any potential advantages from achieving a zero add-on through a good
model. In fact, we would propose that the £xed component should be lowered and
the range of the variable add-on potentially extended in order to leave suf£cient
incentives for banks to use the best models.

Stahl (1997) has recently advanced an interesting theoretical justi£cation for
the £xed factor of 3, which has formerly been interpreted as a somewhat arbitrary
political compromise. His two arguments, one related to the tail misspeci£cation
in variance-covariance approaches, the other related to potential time-variation of
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5. INCENTIVES AND THE BASLE MULTIPLICATION FACTOR

portfolio return distributions over the relevant data window (in particular uniden-
ti£ed increases in the variance of returns), are both based on a very general statis-
tical result known as Chebyshev Inequality. If R is a random variable with mean
µR and £nite variance σ2

R, then

Pr [µR − kσR < R < µR + kσR] ≥ 1 − 1

k2
(2)

Equation (2) implies, for example, that – whatever the true distribution of
a random variable R – the boundaries of a 99% con£dence interval ( Pr [·] =
0.99) are never wider than 10 standard deviations left and right from the mean.(
0.99 ≥ 1 − 1/k2 ⇔ |k| ≤ 10

)

Note that Chebyshev’s inequality (2) is true for any type of distribution which
has a £nite variance. Applied to VaR, it says in a way: Assume we do not
know anything about the structure of £nancial market returns, what is the ex-
treme boundary that could cover any speci£cation error? Of course, at this level
of generality the answer must be a very conservative multiplication factor (some-
thing between 3 and 4 according to Stahl’s calculations) in order to cover even
the weirdest distributions. An example showing how far off this theoretical bound
can be, is given in Haan, Jansen, Koedijk, and de Vries (1994).

We do know much more than ’nothing’ about £nancial market returns. As
discussed above, we know that these returns have fat tails and that a single limit
law determines the shape of these tails. Including this information, as done in the
tail estimation approach described above, is both ef£cient from the risk manager’s
perspective and prudent from the regulator’s point of view.

This conclusion is not subjective and hardly dependent on any particular em-
pirical speci£cations. The £xed component of 3 in the Basle multiplication fac-
tor is unnecessarily conservative. In order to give banks the opportunity to reap
the bene£ts of better VaR models, in terms of lower minimum regulatory capital
against market risks, the £xed component of the Basle multiplication factor should
be reduced. In order to suf£ciently penalize bad models the range of the variable
add-on could be increased. This would avoid any disincentives through pruden-
tial capital requirements to future progress in banks’ risk management techniques,
while preserving the fundamentals of the Basle internal models approach Good-
hart, Hartmann, Llewellyn, Rojas-Suarez, and Weisbrod (1997) (chapter 5).

To be sure, it is extremely dif£cult for external regulators to evaluate to which
extent they can have con£dence in banks’ internal risk management techniques,
and some degree of conservativeness is a necessary characteristic of every £nan-
cial regulator confronted with the sometimes wild gyrations of £nancial market
behavior. But it seems that in the ”Amendment to the Basle Capital Accord to
Incorporate Market Risks” this conservativeness may have gone too far.
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6. CONCLUSIONS

6 Conclusions

In this article we have argued that most traditional VaR techniques fail to properly
model the tails of portfolio return distributions - the very essence of the value-at-
risk concept. A semi-parametric approach, based on results from extreme value
theory, turns out to produce much more reliable VaR estimates. Furthermore we
argue that, in the light of theoretical and empirical considerations, the £xed Basle
multiplication factor of 3 appears to be very conservative and should be reduced,
while the range of the variable add-on should be increased.

There are already more far-reaching reform proposals on the table. Not the
least the pre-commitment approach for market risk capital requirements Kupiec
and O’Brien (1995b) and Kupiec and O’Brien (1997). Although rarely pointed
out, pre-commitment actually implies an endogenous, incentive compatible mul-
tiplication factor. These new ideas have their merits, but before they are ready
for political compromise, the present regulatory approaches should be improved
to ensure £nancial stability at reasonable costs for both consumers and market
participants.
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