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Abstract
Tail index estimation depends for its accuracy on a precise choice
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1 Introduction

Let X1, X2, · · · be independent random variables with common distribution
function F which has a regularly varying tail

1− F (x) = x−1/γL(x) x → ∞, γ > 0 (1.1)

where L is a slowly varying function and 1/γ is the index of regular variation,
or tail index. This is the case if F is in the domain of attraction of an
extreme-value distribution with positive index or if F is in the domain of
attraction of a stable distribution with index 0 < α < 2. Various estimators
for estimating γ have been proposed (see Hill (1975), Pickands III (1975),
de Haan and Resnick (1980), Hall (1982), Mason(1982), Davis and Resnick
(1984), Csörgő, Deheuvels and Mason (1985), Hall and Welsh (1985)). We
concentrate on the best known estimator, Hill’s estimator:

γn(k) :=
1

k

k∑
i=1

logXn,n−i+1 − logXn,n−k,

where Xn,1 ≤ · · · ≤ Xn,n are the order statistics of X1, · · · , Xn.
It is well known that if k = k(n) → ∞ and k(n)/n → 0, then

γn(k) → γ, n → ∞
in probability (Mason(1982)). This follows since k(n) → ∞ implies that
eventually infinitely many order statistics are involved, allowing for the use
of the law of large numbers, while the condition k(n)/n → 0 means that the
tail and nothing else is estimated. An asymptotic normality result for γn(k)
is needed for the construction of a confidence interval. Hall (1982) showed
that if one chooses k(n) by

k0(n) := argmin
k

AsyE(γn(k)− γ)2

where AsyE denotes the expectation with respect to the limit distribution,
then √

k0 (n) (γn (k0 (n))− γ)
d→ N

(
b, γ2

)
,

so that the optimal sequence k0 (n) results in an asymptotic bias b. One
can evaluate k0 (n) asymptotically when the first and second order regular
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variation properties of the underlying distribution are known. A version of
that result is our Theorem 1. In fact k0 (n) is the value which just balances
the asymptotic variance and bias components of E (γn (k)− γ)2.

Our framework is a second order condition connected with (1.1). There
exists a function A∗ not changing sign near infinity such that

lim
t→∞

1−F ((x)
1−F (t)

− x−1/γ

A∗ (t)
= x−1/γ x

ρ/γ − 1

ρ/γ

for x > 0 and where ρ ≤ 0 is the second order parameter. A reformulated
version of this condition with the inverse function U of 1/ (1− F ) is needed:
There exists a function A, not changing sign near infinity, such that

lim
t→∞

U(tx)
U(t)

− xγ

A (t)
= xγ x

ρ − 1

ρ
. (1.2)

The function |A| is regularly varying at infinity with index ρ. We write
|A| ∈ RVρ. We solve the optimality issue when ρ is strictly negative. Under
this condition k0(n) can be expressed in terms of γ, ρ and the second order
rate function A.

Our aim is to determine the optimal sequence k0 (n) solely on the basis
of the sample, i.e. to determine an estimator k̂0 (n) such that√

k̂0 (n)
(
γn

(
k̂0 (n)

)
− γ

)
d→ N

(
b, γ2

)
. (1.3)

For this it is sufficient to prove

k̂0 (n)

k0 (n)
→ 1 (1.4)

in probability (Hall and Welsh (1985)). To find such k̂0 (n) we need two steps.
We apply two subsample bootstrap procedures. This solves the problem
under the extra assumption that A (t) = ctρ with ρ < 0 and c 	= 0, but
otherwise ρ and c unknown.

As of today the published literature does not contain a solution for the
estimation of k0 (n) except for very special cases. Most advanced is Hall
(1990), who obtained an estimator k̂0(n) which satisfies (1.4) under two ex-
tra assumptions: That ρ is known, and that a prior estimate of γ is available
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such that this estimator already converges roughly at the optimal rate 1. We
are able to dispense with these assumptions. Nevertheless, Hall’s (1990) sug-
gestion to use a bootstrap method was very instrumental for the development
of our automatic and general procedure.

As a byproduct of our approach we obtain a consistent estimator for the
second order parameter ρ, cf. eq. (3.9) below. We believe this result to be
new to the literature as well.

A completely different approach to the problem is taken in a recent paper
by Drees and Kaufmann (1998). The Drees and Kaufmann method requires
the choice of a tuning parameter. In our case the equivalence of this tuning
parameter is the choice of the bootstrap resample size n1. Below we present
a fully automatic procedure for obtaining n1 in the sense that a heuristic
algorithm is used to determine the bootstrap sample size (see Section 4). An
explicit procedure for choice of the resample size appears to be new to the
literature as well.

2 Main Results

Let Xn,1 ≤ · · · ≤ Xn,n be the order statistics of X1, · · · , Xn. Hill’s estimator
is defined by

γn(k) :=
1

k

k∑
i=1

logXn,n−i+1 − logXn,n−k.

Various authors have considered the asymptotic normality of γn, see Hall
(1982). We can minimize the mean squared error of γn to get the asymp-
totically optimal choice of k, but it depends on the unknown parameter γ
and function A(t) (see Dekkers and de Haan (1993)). We apply the powerful
bootstrap tool to find the optimal number of order statistics adaptively.

The asymptotic mean squared error of γn is defined as

AMSE (n, k) := AsyE (γn (k)− γ)2 .

The AMSE will be estimated by a bootstrap procedure. Subsequently, we
minimize the estimated AMSE to find the optimal k-value adaptively. For

1Hall (1990) also uses the same idea to select the bandwidth in kernel estimation
procedures. There, however, the second assumption is rather innocuous; but this is not
the case for the problem at hand.
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this to work two problems need to be solved. Even if one were given γ,
then the regular bootstrap is not ensured to yield a AMSE estimate which
is asymptotic to AMSE (n, k). Moreover, one does not know γ in the first
place. The first problem can be solved by using a bootstrap resample size n1

which is of smaller order than n. Therefore resamples X ∗
n1

= {X∗
1 , · · · , X∗

n1
}

are drawn from Xn = {X1, · · · , Xn} with replacement. Let n1 < n and
X∗

n1,1 ≤ · · · ≤ X∗
n1,n1

denote the order statistics of X ∗
n1

and define

γ∗
n1
(k1) :=

1

k1

k1∑
i=1

logX∗
n1,n1−i+1 − logX∗

n1,n1−k1
.

Hall (1990) proposes the bootstrap estimate

̂AMSE (n1, k1) = E
((

γ∗
n1
(k1)− γn (k)

)2
∣∣∣Xn

)
.

In this setup k has to be chosen such that γn (k) is consistent. Then an
estimate of k1 for sample size n1 is obtained. The problem is, however, that
k is unknown. Therefore we replace γn (k) in the above expression by a more
suitable statistic. This can be achieved by using a control variate.

Define

Mn (k) =
1

k

k∑
i=1

(logXn,n−i+1 − logXn,n−k)
2 .

Note that Mn (k) / (2γn (k)) is another consistent estimator of γ, which also
balances the bias squared and variance if k tends to infinity with the rate
of k0 (n). Only the multiplicative constant differs. Therefore, we propose to
use the following bootstrap estimate for the mean squared error:

Q (n1, k1) := E

((
M∗

n1
(k1)− 2

(
γ∗

n1
(k1)

)2
)2

∣∣∣∣Xn

)
,

where M∗
n1
(k1) =

1
k1

∑k1

i=1

(
logX∗

n1,n1−i+1 − logX∗
n1,n1−k1

)2
.

It can be shown that the statistic Mn (k) / (2γn (k))−γn (k) and γn (k)−γ
have a similar asymptotic behavior, in particular both ahve asymptotic mean
zero. Accordingly, as is shown in the following two theorems, the k-value that

minimizes AMSE(n, k) and the k-value that minimizesAsyE
(
Mn (k)− 2 (γn (k))

2)2

are of the same general order (with respect to n), under some conditions.
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Theorem 1. Suppose (1.2) holds and k → ∞, k/n → 0. Determine k0 (n)
such that AMSE (n, k) is minimal. Then

k0 (n) =
n

s−
(

γ2(1−ρ)2

n

) (1 + o (1)) ∈ RV−2ρ/(1−2ρ), as n → ∞

where s− is the inverse function of s, with s given by

A2 (t) =

∫ ∞

t

s (u) du (1 + o (1)) as t → ∞.

For the existence of such a monotone function see Lemma 2.9 of Dekkers and
de Haan (1993).

Theorem 2. Suppose (1.2) holds and k → ∞, k/n → 0. Determine k̄0 (n)

such that AsyE
(
Mn (k)− 2 (γn (k))

2)2
is minimal. Then

k̄0 (n) =
n

s−
(

γ2(1−ρ)4

nρ2

) (1 + o (1)) , as n → ∞.

Corollary 3.

k̄0 (n)

k0 (n)
→

(
1− 1

ρ

) 2
1−2ρ

(n → ∞) .

The next theorem is our main result and shows that the optimal k1 for
a subsample of size n1 can be estimated consistently. The method used in
proving this result is more involved but similar to the method that is used
in proving Theorem 1.

Theorem 4. Suppose (1.2) holds and k1 → ∞, k1/n1 → 0, n1 = O (n1−ε)
for some 0 < ε < 1. Determine k∗

1,0 (n1) such that

Q (n1, k1) = E

((
M∗

n1
(k1)− 2

(
γ∗

n1
(k1)

)2
)2

∣∣∣∣Xn

)
is minimal. Then

k∗
1,0 (n1) s

−
(

γ2(1−ρ)4

n1ρ2

)
n1

p→ 1, as n → ∞.
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Theorem 4 gives the optimal k1 for sample size n1, but we need the optimal
value for the sample size n. This can be achieved modulo a conversion factor.

Corollary 5. Suppose (1.2) holds for A (t) = ctρ, t → ∞ and k1 → ∞,
k1/n1 → 0, n1 = O (n1−ε) for some 0 < ε < 1. Then(n1

n

)− 2ρ
2ρ−1 k∗

1,0 (n1)

k̄0 (n)

p→ 1, as n → ∞.

The conversion factor can be calculated consistently as follows.

Theorem 6. Let n1 = O (n1−ε) for some 0 < ε < 1/2 and n2 = (n1)
2 /n.

Suppose (1.2) holds for A (t) = ctρ, t → ∞ and ki → ∞, ki/ni → 0 (i = 1, 2).
Determine k∗

i,0 such that

E

((
M∗

ni
(ki)− 2

(
γ∗

ni
(ki)

)2
)2

∣∣∣∣Xn

)
is minimal (i = 1, 2). Then

(k∗
1,0(n1))

2

k∗
2,0(n2)

(
(log k∗

1,0(n1))
2

(2 log n1−log k∗
1,0(n1))

2

) log n1−log k∗1,0(n1)

log n1

k0 (n)

p→ 1 (2.1)

as n → ∞.

Remark 1. From Theorem 6 we can achieve the optimal choice of k asymp-
totically. Therefore by using the asymptotically optimal choice of k, Hill’s
estimator will also be asymptotically optimal.

Corollary 7. Suppose the conditions of Theorem 6 hold. Define

k̂0 (n) :=

(
k∗

1,0 (n1)
)2

k∗
2,0 (n2)

(
(log k∗

1,0(n1))
2(

2 log n1 − log k∗
1,0 (n1)

)2

) log n1−log k∗1,0(n1)

log n1

.

Then γn(k̂0) has the same asymptotic efficiency as γn (k0).

To summarize, the algorithm for computing γn(k̂0) is as follows. For a
given choice of n1 draw bootstrap resamples of size n1. Calculate Q (n1, k1),
i.e. the bootstrap AMSE, at each k1; and find the k∗

1,0 (n1) which minimizes
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this bootstrap AMSE. Repeat this procedure for an even smaller resample
size n2, where n2 = (n1)

2 /n. This yields k∗
2,0 (n2). Subsequently calculate

k̂0 (n) from the formula in Corollary 7. Finally, estimate γ by γn(k̂o). By
using this procedure two tuning parameters have to be chosen, the number
of bootstrap resamples and n1. The number of bootstrap resamples is deter-
mined by the computational facilities, and can be chosen on the basis of a
stopping criterion where either the resampling is stopped once the fluctua-
tions in the bootstrap MSE’s fall below a certain level, or once a bound on
run time is hit. The choice of n1 is made as follows.

From Theorem 6 we know that for any ε such that 0 < ε < 1/2 the n1 =
n1−ε is an appropriate choice. Hence, asymptotic arguments provide little
guidance in choosing between any of the possible n1. We use the following
heuristic procedure. In the proof to Theorem 6 we will show that

k̄ok
∗
2,0(

k∗
1,0

)2 → 1

in probability. By very similar arguments one can show that

AsyE
(
Mn

(
k̄0

) − 2
(
γn

(
k̄0

))2
)2 Q

(
n2, k

∗
2,0

)(
Q

(
n1, k∗

1,0

))2 → 1

in probability as well. Thus an estimator forAsyE
(
Mn

(
k̄0

) − 2
(
γn

(
k̄0

))2
)2

is the ratio

R (n1) :=

(
Q

(
n1, k

∗
1,0

))2

Q
(
n2, k∗

2,0

) .

The finite sample n1 is now chosen such that R (n1) is minimal. Note that
this criterion is the finite sample analogue of the asymptotic criterion that is
used for locating k̄0 (n). In practice this criterion is implemented by working
with a grid of n1 values over which R (n1) is minimized. The grid size is
again determined by the available computing time.

3 Proofs

Let Y1, · · · , Yn be independent random variables with common distribution
function G (y) = 1−y−1, (y ≥ 1). Let Yn,1 ≤ · · · ≤ Yn,n be the order statistics
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of Y1, · · · , Yn. Note that {Xn,n−i+1}n
i=1

d
= {UYn,n−i+1}n

i=1 with the function
U defined in the Introduction.

Lemma 8. Let 0 < k < n and k → ∞. We have
(1) for n → ∞, Yn,n−k/

(
n
k

) → 1 in probability.
(2) for n → ∞, (Pn, Qn) is asymptotically normal with means zero, vari-

ance 1 and 20 respectively and covariance 4, where

Pn :=
√

k

{
1

k

k∑
i=1

log Yn,n−i+1 − log Yn,n−k − 1

}
and

Qn :=
√

k

{
1

k

k∑
i=1

(log Yn,n−i+1 − log Yn,n−k)
2 − 2

}
.

Proof. Similar to the proof of Lemma 3.1 of Dekkers and de Haan (1993).

Proof of Theorem 1. We use the method of Dekkers and de Haan (1993),
which we outline, since a similar reasoning is used in the proofs of Theorem
2 and Theorem 4.

Relation (1.2) is equivalent to the regular variation of the function

|logU (t)− γ log t− c0|
with index ρ for some constant c0 (see Geluk and de Haan (1987), II.1). Then
(1.2) holds with

A (t) = ρ (logU (t)− γ log t− c0) .

Applying extended Potter’s inequalities to the function A we get that for
each 0 < ε < 1 there exists t0 > 0 such that for t ≥ t0 and tx ≥ t0

(1− ε)xρe−ε| log x| − 1 ≤ logU (tx)− logU (t)− γ log x
A(t)

ρ

≤ (1 + ε)xρeε| log x| − 1.

(3.1)

Applying this relation with t replaced by Yn,n−k and x replaced by Yn,n−i+1/Yn,n−k,
adding the inequalities for i = 1, 2, · · · , k and dividing by k we get

γn ≈ γ +
γPn√

k
+ ρ−1A (Yn,n−k) (1± ε)

{
1

k

k∑
i=1

(
Yn,n−i+1

Yn,n−k

)ρ±ε

− 1

}
.
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Now {
Yn,n−i+1

Yn,n−k

}k

i=1

d
= {Yi}k

i=1

with Y1, · · · , Yk i.i.d. with common distribution function 1− 1/x. Hence by
the weak law of large numbers

γn ≈ γ +
γPn√

k
+ ρ−1 (1± ε)

(
1

1− ρ∓ ε
− 1

)
A (Yn,n−k) ,

i.e.

γn = γ +
γPn√

k
+ (1− ρ)−1 A

(n

k

)
+ op

(
A

(n

k

))
(Note that in the latter term we have replaced Yn,n−k by n/k which can be
done since |A| is regularly varying). Hence

AsyE (γn − γ)2 ≈ γ2

k
+

A2
(

n
k

)
(1− ρ)2

.

We can assume (see Lemma 2.9 of Dekkers and de Haan(1993)) that A2 has
a monotone derivative s which is then regularly varying with index 2ρ − 1.
Consequently s− (1/t) (s− denoting the inverse of s) is regularly varying with
index 1/ (1− 2ρ) . The result is then obtained by minimizing the right hand
size of the equation above.

Proof of Theorem 2. From the proof of Theorem 1 we get

γn
d
= γ +

γPn√
k
+ d1A (Yn,n−k) + op (A (n/k)) (3.2)

with d1 =
1

1−ρ
and hence

γ2
n

d
= γ2 +

2γ2Pn√
k

+ 2γd1A (Yn,n−k) + op (A (n/k)) . (3.3)

Similarly

Mn
d
= 2γ2 +

γ2Qn√
k

+ d2A (Yn,n−k) + op (A (n/k)) (3.4)

where d2 =
2γ(2−ρ)

(1−ρ)2
. The rest of the proof is similar to that of Theorem 1.
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Proof of Theorem 4. Let Gn denote the empirical distribution function of n
independent, uniformly distributed random variables. As n is large enough
and n1 = O (n1−ε), we have

1/2 ≤ sup
0<t≤n1(log n1)

2

tG−
n

(
1

t

)
≤ 2 a.s. (3.5)

and

sup
t≥2

∣∣∣∣√t

(
Gn

(
1

t

)
− 1

t

)∣∣∣∣ ≤ log n√
n

a.s.

(see equation (10) and (17) of Chapter 10.5 of Shorack and Wellner (1986)).
Hence

sup
4≤t≤n1(log n1)

2

∣∣∣∣∣
√

1

G−
n

(
1
t

) [
Gn

(
G−

n

(
1

t

))
−G−

n

(
1

t

)]∣∣∣∣∣ ≤ log n√
n

a.s.

Therefore for all 4 ≤ t ≤ n1 (log n1)
2∣∣∣∣tG−

n

(
1

t

)
− 1

∣∣∣∣ ≤ 2
√

t log n√
n

a.s. (3.6)

Let Fn denote the empirical distribution function of Xn , Un =
(

1
1−Fn

)−
.

Now we use (3.1), (3.5), (3.6),

{ | log y| ≤ 2|y − 1| for all 1/2 ≤ y ≤ 2
|y−ρ − 1| ≤ (−ρ)(2−ρ−1 ∨ 21+ρ)|y − 1| for all 1/2 ≤ y ≤ 2

and

logUn(t) = logF−
n

(
1− 1

t

)
d
= logF− (

G−
n

(
1− 1

t

))
= logU

(
1

1−G−
n (1− 1

t )

)
d
= logU

(
t

tG−
n ( 1

t )

)
.

From this we conclude that for any 0 < ε < 1 there exists t0 > 4 such
that for t0 < t < n1 (log n1)

2 and t0 < tx < n1 (log n1)
2:
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log Un(tx)−log Un(t)−γ log x
A(tx)

ρ

d
=

log U

(
tx

txG−
n ( 1

tx)

)
−log U(tx)−γ log

(
1

txG−
n ( 1

tx)

)
A(tx)

ρ

A(tx)
A(t)

−
log U

(
t

tG−
n ( 1

t )

)
−log U(t)−γ log

(
1

tG−
n ( 1

t )

)
A(t)/ρ

+ log U(tx)−log U(t)−γ log x
A(t)/ρ

+
γ log

(
1

txG−
n ( 1

tx)

)
A(t)/ρ

−
γ log

(
1

tG−
n ( 1

t )

)
A(t)/ρ

≤
[
(1 + ε)

(
txG−

n

(
1
tx

))−ρ
eε|log(txG−

n ( 1
tx))| − 1

]
(1 + ε)xρeε| log x|

− (1− ε)
(
tG−

n

(
1
t

))−ρ
e−ε|log(tG−

n ( 1
t ))| + 1 + (1 + ε)xρeε| log x| − 1

+
∣∣∣ γρ
A(t)

∣∣∣ 2 (∣∣txG−
n

(
1
tx

) − 1
∣∣ + ∣∣tG−

n

(
1
t

) − 1
∣∣) a.s.

≤ (1 + ε)
[(

txG−
n

(
1
tx

))−ρ − 1
]
eε|log(txG−

n ( 1
tx))| (1 + ε)xρeε| log x|

+(1 + ε)
∣∣∣eε|log(txG−

n ( 1
tx))| − 1

∣∣∣ (1 + ε)xρeε| log x|

+ε (1 + ε)xρeε| log x| − (1− ε)
[(

tG−
n

(
1
t

))−ρ − 1
]
e−ε|log(tG−

n ( 1
t ))|

− (1− ε)
[
e−ε|log(tG−

n ( 1
t ))| − 1

]
− ε

+(1 + ε)xρeε| log x| − 1 +
∣∣∣ γρ
A(t)

∣∣∣ 4
√

t log n√
n

(
√

x+ 1) a.s.

≤ (1 + ε) (−ρ) (2−ρ−1 ∨ 21+ρ)
∣∣txG−

n

(
1
tx

) − 1
∣∣ eε log 2 (1 + ε)xρeε| log x|

+4εeε log 2 (1 + ε)xρeε| log x| + (1 + ε)2 xρeε| log x| − 1
+ (1− ε) (−ρ) (2−ρ−1 ∨ 21+ρ)

∣∣tG−
n

(
1
t

) − 1
∣∣ eε log 2

+4ε (1− ε) eε log 2 − ε+
∣∣∣ γρ
A(t)

∣∣∣ 4
√

t log n√
n

(
√

x+ 1) a.s.

≤
[
(−ρ) (2−ρ+1 ∨ 23+ρ) + 2

∣∣∣ γρ
A(t)

∣∣∣] 2
√

t log n√
n

(
√

x+ 1)

+ (1 + 9ε) (1 + ε)xρeε| log x| − 1 + 7ε a.s.

(3.7)
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Similarly

log Un(tx)−log Un(t)−γ log x
A(t)/ρ

≥ −
[
(−ρ) (2−ρ+1 ∨ 23+ρ) + 2

∣∣∣ γρ
A(t)

∣∣∣] 2
√

t log n√
n

(
√

x+ 1)

+(1− 9ε)(1− ε)xρe−ε| log x| − 1− 7ε a.s.

(3.8)

Inequalities (3.7) and (3.8) are valid in probability with t replaced by
Yn1,n1−k1 and tx replaced by Yn1,n1−i+1(i = 1, · · · , k1) since

4 ≤ Yn1,n1−i+1 ≤ Yn1,n1(i = 1, · · · , k1) in probability

and

Yn1,n1

(n1(log n1)2)
→ 0 in probability

for n1 → ∞ and k1/n1 → 0.
We now minimize

E

((
M∗

n1
(k1)− 2

(
γ∗

n1
(k1)

)2
)2

∣∣∣∣Xn

)
.

Note that conditionally, given Xn, Pn1 is once again a normalized m of i.i.d.
random variables from an exponential distribution. Hence, when n1 increases,
the distribution of Pn1 approaches a normal one. Similarly for Qn1 .

We proceed as in the proof of Theorem 2 and use

γ∗
n1
(k1)

d
= γ +

γPn1√
k1

+ d1A (Yn1,n1−k1) + op (A (n1/k1)) +O

(
log n

√
n1/k1√
n

)
,

(
γ∗

n1
(k1)

)2 d
= γ2 +

2γ2Pn1√
k1

+ 2γd1A (Yn1,n1−k1) + op

(
A

(
n1

k1

))
+O

(
log n

√
n1/k1√
n

)
and

M∗
n1
(k1)

d
= 2γ2 +

γ2Qn1√
k1

+ d2A (Yn1,n1−k1) + op

(
A

(
n1

k1

))
+O

(
log n

√
n1/k1√
n

)
.

Note that the term
log n

√
n1/k1√
n

= o
(
1/
√

k1

)
, so that it can be neglected in

the minimization process. The statement of Theorem 4 follows.
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Proof of Corollary 5. The proof follows easily from Theorem 2 and Theorem
4 and the fact that

t
1

2ρ−1 s− (1/t) → (−2ρc2
) 1

1−2ρ .

Proof of Theorem 6. Since k∗
1,0 ∈ RV −2ρ

1−2ρ
in probability, we have

log k∗
1,0

log n1

p→ −2ρ
1− 2ρ

(see Proposition 1.7.1 of Geluk and de Haan (1987)), i.e.,

log k∗
1,0

−2 log n1 + 2 log k∗
1,0

p→ ρ. (3.9)

Write the result of Corollary 5 for k∗
1,0 and k∗

2,0:
k∗
1,0

k̄0
/
(

n1

n

) 2ρ
2ρ−1

p→ 1
k∗
2,0

k̄0
/
(

n2

n

) 2ρ
2ρ−1

p→ 1.

Hence

k̄0k
∗
2,0/

(
k∗

1,0

)2 p→ 1, (3.10)

and by Corollary 3 (
k∗

1,0(n1)
)2

k∗
2,0(n2)k0(n)

p→
(
1− 1

ρ

) 2
1−2ρ

.

An application of the estimate of ρ from (3.9) gives the result.

Proof of Corollary 7. We now have a random sequence k̂0 (n) with the prop-
erty

lim
n→∞

k̂0 (n)

k0 (n)
= 1 in probability.

Theorem 4.1 of Hall andWelsh (1985) now guarantees that γn(k̂0 (n)) achieves
the optimal rate.
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4 Simulation and Estimation

We investigate the performance of our fully automatic estimation procedure
by means of Monte Carlo experiments and by an application to some financial
data sets, i.e. the stock price index S&P-500 and foreign exchange quote
data. The sample sizes are typical for current financial data sets, ranging
from 2,000 to 20,000 observations. The sample sizes in the Monte Carlo
experiments were chosen to be equally large.

4.1 Simulations

We evaluate the performance of our estimators for γ, ρ and k0 (n) on the basis
of pseudo i.i.d. random numbers from the Student-t and type II extreme
value distributions in addition to two cases of dependent data. The tail
index 1/γ equals the degrees of freedom in case of the Student-t distribution.
Recall that the type II extreme value distribution reads exp

[−x−1/γ
]
. We

focus on 1/γ = 1, 4 and 11. For the Student-t distribution ρ/γ = −2, while
for the extreme value distribution ρ = −1.

In addition to the i.i.d. data, we also investigate the performance of
our estimator for dependent data. From Hsing (1991), Resnick and Starica
(1998), and Embrechts et al. (1997) we know that the Hill estimator is consis-
tent for dependent data like ARMA processes and ARCH-type processes. We
focus on two stochastic processes. First, the MA(1) process Yt = Xt +Xt−1,
where the Xt are i.i.d. Student-t with 1/γ = 3 degrees of freedom is consid-
ered. The first and second order parameters of the tail expansion of Yt can be
computed by standard calculus methods. The interest in this process derives
from the fact that while γn (k) is biased upwards for Student-t distributions,
the bias switches sign for the marginal distribution of Y, i.e. the c-parameter
in the A (t) function switches sign.

The other stochastic process exhibits conditional heteroscedasticity. Fi-
nancial time series return data typically have the fair game property with
dependence only in the second moment, see e.g. Bollerslev, Chou and Kro-
ner (1992) and Embrechts, Kluppelberg and Mikosch (1997). The following
process, denoted as Stochastic Volatility, is typical for the processes that are
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used to model financial return data:

Yt = UtXtHt,
Ut ∼ i.i.d. discrete uniform on − 1, 1,

Xt =
√
57/Zt, Zt ∼ χ(3) i.i.d. ,

Ht = 0.1Qt + 0.9Ht−1, Qt ∼ N (0, 1) , i.i.d.

The Xt and Zt are chosen such that the marginal distribution of Yt has a
Student-t with 3 degrees of freedom distribution. This allows us to evaluate
the performance of our procedure.

The results of the Monte Carlo experiments are reported in Table 1 and
Table 2 for sample sizes of 2,000 and 20,000 respectively. Each table is based
on 250 simulations per distribution. For the choice of the tuning parameter n1

we use the procedure described at the end of section 2. Hence, for n = 2, 000
we searched over the interval from n1 = 600 to n1 = 1, 700 by increments
of 100. The number of bootstrap resamples was 1,000. In the larger sample
with size n = 20, 000 we searched from n1 = 2, 000 to n1 = 15, 000, with
increments of 1,000, using 500 bootstrap resamples for each n1. The grid size
could be made much finer, and the number of resamples larger for a specific
data set in order to increase the precision. For each distribution we report
the true value of the parameter, the mean, the standard error (s.e.) and the
root mean squared error (RMSE). We report estimates for γ and −ρ, while
k̂0 (n) is reported relative to k0 (n).

From the Tables 1 and 2 we see that the estimator for the inverse tail index
γ performs well in terms of bias and standard error for both the larger and the
smaller sample sizes. Evidently, in most cases are the bias and standard error
lower for the larger sample size n = 20, 000. The only exception to decent
performance in terms of bias is the Student-t with 11 degrees of freedom,
since it is heavily upwards biased in the smaller sample. This occurs even
though the RMSE does not vary that much with γ for the Student-t class.
Thus for some applications the RMSE criterion may give too low a weight
to the bias. The method also works well for the two stochastic processes.

The estimates for the second order parameter ρ are less precise than those
for the first order parameter (after rescaling the standard error by the true
parameter value). The tail observations are naturally more informative about
the leading terms of the expansion at infinity. Because k̂0 (n) depends on ρ̂,
it is not surprising to see that the same observation applies to k̂0 (n) /k0 (n).
As was predicted on the basis of the theoretical parameters, the MA(1) γ-
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Table 1: Monte Carlo Experiment with n = 2, 000
Distribution Parameters True Mean S.E. RMSE
Student(1) γ 1.000 1.004 0.106 0.106

−ρ 2.000 1.332 0.362 0.768

k̂0 (n) /k0 (n) 1.000 0.874 0.426 0.444
Student(4) γ 0.250 0.296 0.074 0.087

−ρ 0.500 0.562 0.235 0.242

k̂0 (n) /k0 (n) 1.000 1.133 0.988 0.995
Student(11) γ 0.091 0.170 0.050 0.094

−ρ 0.182 0.374 0.173 0.258

k̂0 (n) /k0 (n) 1.000 1.386 1.114 1.177
Extreme(1) γ 1.000 1.035 0.095 0.101

−ρ 1.000 2.140 0.818 1.402

k̂0 (n) /k0 (n) 1.000 1.342 0.732 0.806
Extreme(4) γ 0.250 0.259 0.024 0.025

−ρ 1.000 2.138 0.817 1.400

k̂0 (n) /k0 (n) 1.000 1.339 0.732 0.805
Extreme(11) γ 0.091 0.094 0.009 0.010

−ρ 1.000 2.137 0.824 1.403

k̂0 (n) /k0 (n) 1.000 1.338 0.735 0.808
MA(1) γ 0.333 0.322 0.089 0.090

−ρ 0.667 0.621 0.279 0.282

k̂0 (n) /k0 (n) 1.000 2.544 2.260 2.733
Stochastic γ 0.333 0.368 0.083 0.090
Volatility −ρ 0.667 0.663 0.252 0.252

k̂0 (n) /k0 (n) 1.000 1.041 0.827 0.826
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Table 2: Monte Carlo Experiments with n = 20, 000
Distribution Parameters True Mean S.E. RMSE
Student(1) γ 1.000 1.009 0.037 0.038

−ρ 2.000 1.519 0.253 0.543

k̂0 (n) /k0 (n) 1.000 1.023 0.372 0.372
Student(4) γ 0.250 0.283 0.029 0.044

−ρ 0.500 0.646 0.126 0.193

k̂0 (n) /k0 (n) 1.000 1.562 1.038 1.179
Student(11) γ 0.091 0.146 0.033 0.064

−ρ 0.182 0.423 0.118 0.269

k̂0 (n) /k0 (n) 1.000 2.379 2.235 2.631
Extreme(1) γ 1.000 1.026 0.033 0.042

−ρ 1.000 1.940 0.417 1.028

k̂0 (n) /k0 (n) 1.000 1.635 0.722 0.960
Extreme(4) γ 0.250 0.257 0.008 0.011

−ρ 1.000 1.939 0.415 1.026

k̂0 (n) /k0 (n) 1.000 1.629 0.715 0.951
Extreme(11) γ 0.091 0.093 0.063 0.004

−ρ 1.000 1.942 0.414 1.028

k̂0 (n) /k0 (n) 1.000 1.632 0.719 0.956
MA(1) γ 0.333 0.321 0.044 0.046

−ρ 0.667 0.766 0.201 0.224

k̂0 (n) /k0 (n) 1.000 3.977 2.732 4.037
Stochastic γ 0.333 0.357 0.030 0.038
Volatility −ρ 0.667 0.744 0.134 0.154

k̂0 (n) /k0 (n) 1.000 1.281 0.768 0.816
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Table 3: Asymptotic Ratios
Distribution True Bias RMSE Root of

Factor Ratio Ratio k̂0 (n) ratio
Student(1) 2.51 0.44 2.78 2.71
Student(4) 1.78 1.39 1.97 2.09
Student(11) 1.36 1.43 1.46 1.78
Extreme(1) 2.15 1.35 2.41 2.37
Extreme(4) 2.15 1.28 2.27 2.38
Extreme(11) 2.15 1.50 2.50 2.38
MA(1) 1.93 0.92 1.96 2.41
Stochastic Volatility 1.93 1.46 2.37 2.14

estimate is downward biased, while it is upward biased for the Student-t
model.

Another way to evaluate our procedures is to see how the performance
changes as the sample size is increased by the factor 10 if we move from
2,000 to 20,000 observations. From the theory we know that the asymptotic
bias and RMSE should drop by a factor 10−ρ/(1−2ρ), while the squared root
of the ratio of the asymptotically optimal number of highest order statistics
k0 should increase by the same factor. In Table 3 we report the ratios that
are implied by comparing the numbers from Tables 1 and 2. The RMSE and
upper order statistics ratios are close to the true factor. The bias ratio is
less favorable. There are two cases where the bias deteriorated in the larger
sample.

4.2 Asset Return Data

The financial data sets we examine have been widely studied in the area of
finance. The use of high frequency data in financial research and applications
has become standard. For example, some data sets studied in the special
issue of the Journal of Empirical Finance edited by Baillie and Dacorogna
(1997) are larger than 1,5 million, and the sample sizes of the data sets
studied in Embrecht, Kluppelberg and Mikosch (1997, chap. 6), are of order
of magnitude of ten thousand. Nevertheless, even though several aspects
of these high frequency data are by now well understood, the distribution of
tail events has received comparatively little attention in the finance literature.
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On the other hand, this is of clear importance for such applications as risk
management. Here we describe the shape of the tails for two of such data
sets.

We selected daily returns from the S&P 500 stock index with 18,024 ob-
servations from 1928 to 1997, and data extracted from all quotes on the
DM-Dollar contract from September 1992 to October 1993. The quotes data
was supplied by Olsen and Associates who continuously collect these data
from the markets. The number of quotes is over 1,5 million, and these are
irregularly spaced throughout the year. The quotes were aggregated into
52,558 10 minute return observations. The data and the aggregation proce-
dures are described by Danielsson and de Vries (1997). In order to examine
the change in the tail properties of the data over the time interval we de-
cided to create subsamples of the first 2,000 and last 2,000 observations for
both data sets in addition to using the first and last 20,000 observations on
the foreign exchange rate data, and the entire stock index data set. In the
estimation procedure we employed the same grid for n1 as are used in the
simulations; the number of bootstrap resamples, however, was increased to
5,000.

Let Pt be the price at time t of a financial asset like equity or foreign
exchange. The compound return on holding such an asset for one period is
log (Pt+1/Pt) . Hence, returns are denomination free. Therefore returns on
different assets can be directly compared. One dimension along which the
asset returns can be compared in order to assess their relative risk charac-
teristics is by means of the tail index. Financial corporations are required
to use large data sets on past returns to evaluate the risk on their trading
portfolio. The minimum required capital stock of these finacial institutions
is determined on the basis of this risk. The capital requirement ensures that
banks can meet the incidental heavy losses that are so characteristic for the
financial markets. The frequency of these large losses can be analyzed by
means of extreme value theory; see e.g. Jansen and de Vries (1991) for an
early example of this approach, and Embrechts et al. (1997) for a more recent
treatment. In this analysis, the measurement of γ is very important because
it indicates the shape and heaviness of the distribution of returns. It is the
essential input for predictions of out of sample losses, see de Haan, Jansen,
Koedijk and de Vries (1994).

In Table 4 we report some descriptive statistics. The mean return and
standard error of the returns have been annualized because the magnitude
in the high frequency returns is typically very small (for the daily return
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Table 4: Descriptise Statistics
Series Annualized Annualized Skewness Kurtosis

mean return standard error
DM/US 0.842 0. 209 0.70 7.98
first 2,000
DM/US 0.431 0.131 0.78 12.82
last 2,000
DM/US 0.377 0.144 0.31 10.85
first 20,000
DM/US 0.051 0. 116 −0.01 17.35
last 20,000
S&P500 −0.080 0.343 0.22 5.33
first 2,000
S&P500 0.115 0.117 −0.45 4.53
last 2,000
S&P500 0.053 0.179 −0.49 22.71
all 18,024

data we assumed 250 trading days per year). As the table shows, all data
exhibit a high kurtosis which points to peakedness in the center of the return
distribution and heavy tails. The main results are reported in Table 5. We
see that the tails are indeed heavy. The 1/γ estimates show that the number
of bounded moments hovers around 3 to 4. The shorter samples necessarily
give less precise estimates of γ, but the results for the subsamples appear to
be consistent with the large sample results. As was the case in the simulation
experiments there is more variation in the ρ̂ and k̂0(n). The table yields an
interesting impression concerning the first and second order tail indices. It
appears that both γ and ρ are about equal for either asset. An economic
explanation for this observation might be that arbitrage induces similar tail
shapes and hence similar risk properties. The equality of γ across different
assets has been suggested before. But due to the fact that this observation
did depend on the more or less arbitrary choices of k(n), no firm conclusion
regarding this observation could be reached. The current method overcomes
this problem.
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Table 5: Lower Tail Parameters
Series γ̂ −ρ̂ k̂0 (n)
DM/US 0.10 9.93 10
first 2,000
DM/US 0.35 1.93 29
last 2,000
DM/US 0.27 1.70 187
first 20,000
DM/US 0.30 2.01 64
last 20,000
S&P500 0.33 1.45 57
first 2,000
S&P500 0.24 2.06 13
last 2,000
S&P500 0.32 1.85 96
all 18,024
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