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Abstract

Worst-case analysis has increased in popularity among financial
regulators in the wake of the recent financial crisis. In this paper
we provide insight into this measure and provide some guidance on
how to estimate it. We derive the bias for the non-parametric heavy
tailed order-statistics and contrast it with the semi-parametric EVT
approach. We find that if the return distribution has a heavy tail, the
non-parametric worst-case analysis, i.e the minimum of the sample, is
always downwards biased. Relying on semi-parametric EVT reduces
the bias considerably in the case of relatively heavy tails. But for
the less heavy tails this relationship is reversed. Estimates for a large
sample of US stock returns indicates that this pattern in the bias is
also present in financial data. With respect to risk management, this
induces an overly conservative capital allocation
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1 Introduction

Worst-case analysis studies the worst expected outcome over a predetermined
time length, with a typical question what is the worst daily market outcome in
10 years or 2,500 days. Worst-case analysis is increasingly common due to the
recent financial crises. For instance, European Insurance and Occupational
Pensions Authority (EIOPA) has embraced the worst-case analysis as an
additional measure of risk for the insurance and pension industry. In spite of
its increasing importance, little is known about worst-case analysis and what
the appropriate way is to measure it. In this paper we provide insight in the
bias of worst-case estimates and measure their effect for US stock returns.

There are generally three main approaches. The simplest, and the most obvi-
ous, is to directly read the object of interest from the empirical distribution,
in our case the historical minima, the non-parametric approach (EA). One
can also assume a model only for the tail of the distribution and not model
the center of the distribution, the semi-parametric approach (SP). The third
approach is based on specifying a parametric distribution for all outcomes
and estimate its parameters.

Of these three alternatives, the last is the only one that cannot be recom-
mended. The reason is that the estimates will be dominated by the center
of the distribution, so that the fit is optimal for a typical observation, not
the lowest, the focus of our interest. Therefore, such an approach would in
most cases deliver less precise and more uncertain worst-case estimators than
either the EA or the SP. We therefore focus on EA and the SP estimators
and provide guidance on the appropriate use of either.

1.1 Statistical background

To derive the bias of the worst observed observation as a worst-case esti-
mator, we start with a relatively general approach. Begin by deriving the
distribution of observations in an ordered sample. Suppose we observe some
i.i.d heavy tailed random variable Y1, ..., Yn with distribution F , where

lim
t→∞

1− F (tx)

1− F (t)
= xα, α > 0. (1)

The sorted sample, i.e order-statistics, can be represented as,

max (Y1, ..., Yn) = X(1,n) ≥ X(2,n) ≥ · · · ≥ X(n,n) = min (Y1, ..., Yn)
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The distribution of the order-statistics can be studied through the number
of exceedances. These follow a binomial distribution,

G(k,n) (x) =
k−1∑
r=0

(
n

r

)
[1− F (x)]r [F (x)]n−r . (2)

Suppose one is interested in the distribution of the maximum realization:

Pr (max (Y1, ..., Yn) < x) = G(1,n) (x) = [F (x)]n . (3)

Similarly to the standard central limit theorem for the asymptotic distribu-
tion of the arithmetic mean, Fisher and Tippett (1928) and Gnedenko (1943)
provide a limit theorem for the asymptotic distribution of the maximum, i.e
extreme value theory (EVT).

EVT gives the conditions under which there exist sequences bn and an such
that

lim
n→∞

[F (anx+ bn)]n → G(1,n) (x) ,

where G(1,n) (x) is the Fréchet distribution.

Theorem 2.2.2 in Leadbetter et al. (1983) extends the EVT for the maxi-
mum to lower order-statistics by means of the Poisson property of the lower
order-statistics. In particular, the asymptotic distribution of the kth largest
order-statistic is:

G(k,n) (x)→ G(1,n) (x)
k−1∑
s=0

(
− log

[
G(1,n) (x)

])s
s!

. (4)

From (4) we determine the expectation of the order-statistics

E
[
X(k,n)

]
=

an
[k − 1]!

Γ

[
k − 1

α

]
. (5)

To determine this expectation for a specific heavy tailed distribution an needs
to be chosen appropriately.1 To find a good approximation, we use the first
order term of the Hall expansion (Hall and Welsh, 1985):

Pr (Y ≤ −y) = F(−y) = Ay−α[1 +By−β + o(y−β)]. (6)

1For the heavy tailed distributions bn = 0.
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For the Pareto distribution, F (−y) = Ay−α, we observe that the Hall ex-
pansion perfectly fits the first order term.2 For the Pareto distribution the

scaling constant an is (An)
1
α , where A is the scale parameter. Therefore,

we can, through the Hall expansion, extract a good approximation of the
expectation of the order-statistics of heavy tailed distributions.

1.2 The semi–parametric approach

To contrast the expectation of the maximum observation, we compare it to
a semi-parametric estimator of the worst-case. By inverting the first order
expansion in (6), using the empirical counter part of A =

t/n

X(t,n)−αt measured

at some threshold t and F (−y) = k/n, one obtains the semi-parametric tail
quantile estimator

x̂
(n−k/n)
SP (t) = X(t,n)

(
t

k

) 1
α̂t

.

Goldie and Smith (1987) derive the distribution of the semi-parametric quan-
tile estimator

√
t

log (t/np)

(
x̂
(n−k/n)
SP (t)

x(p)
− 1

)
∼ N

(
−sign (B)√

2βα
,

1

α2

)
, (7)

where B and β are the second order scale and shape parameters from (6).

1.3 Comparing the empirical- and semi-parametric quan-
tile estimator

The two approaches, the EA and the SP, have each their own pros and
cons. While the EA is much simpler to implement, the SP might be more
accurate because it uses more observations in the estimation, and therefore
might result in an estimate with a lower bias and uncertainty. However, the
SP is dependent on correctly specifying the semi-parametric distribution and
identifying the threshold X(t,n).

To shed more light on the use of these two estimators, we compare their bias

2All of the standard heavy tailed distributions satisfy the Hall expansion. It even
applies to the GARCH(1,1) unconditional distribution.
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at p = 1/n. From (5) and (7) the bias of the two approaches are:(
x̂
(n−k/n)
SP (t)

x(p)
− 1

)
∼− sign (B)√

2βα

log (k)√
k

. SP (8)(
x̂
(n−k/n)
EA

x(p)
− 1

)
∼ 1

[k − 1]!
Γ

[
k − 1

α

]
− 1. EA (9)

(8) and (9) indicate that neither approach is dominating in all circumstances.
For the EA the asymptotic bias approaches infinity as α approaches 1. How-
ever, as α increases the Γ function decreases rapidly.3 For the SP estimator
the bias is relatively small for moderate values of β and t. This leads to a
crossing point in the bias of the two estimators with respect to α.

Given values of t and β, we define switching point α∗. For α < α∗ the absolute
bias of the SP estimator is smaller than the EA estimator. When α > α∗, the
relationship is reversed. For a fixed t, this relationship is depicted in Figure
1. This figure portraits at which combination of α and β the bias of the non-
parametric worst-case estimator becomes smaller than the semi-parametric
approach.

For example, in the case of the family of Student-t distributions α ∈ [1,∞)
and β = 2. From Figure 1, we read that for t = e2 the switching of the biases
occurs around α∗ ≈ 5. For higher and lower values of t, the α∗ increases.
For the family of symmetric stable distributions, the bias is always smaller
for the SP, as β = α and α < 2.

2 Application

In this section we investigate the bias in the EA and SP estimators for US
stocks, using the CRSP security database. For this empirical application we
use the Hill estimator to estimate the tail exponent α. This estimator de-
pends on a selection of a high order-statistic as a threshold, i.e X(t,n). This
nuisance statistic is obtained by the KS-distance metric.4 Given the estimate
of the tail index, the quantile can be estimated semi-parametrically. We com-
pare the difference between the previously introduced worst-case estimators

3The bias of EA is invariant to dependence in the time-series as measured by the
extremal index. See Leadbetter et al. (1983) page 416.

4The KS-distance metric chooses the threshold which minimizes the maximum quantile
distance between the empirical and Pareto distribution.This approach is further explained
in Danielsson et al. (2015).
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Figure 1: Bias comparison

This Figure depicts the area where the absolute bias of the semi-parametric estimator

becomes larger than the bias of the order statistics (colored region). The biases of the

estimators are at p = 1/n as in (8) and (9). For this figure we fix t at e2. To the right of the

lines the combination of α and β produces a larger bias for the semi-parametric approach.

The dotted line shows where the boundary shifts to when the threshold t is doubled to e2.

for each stock at the 1/n quantile. These differences are collected in different
buckets sorted by the α̂ of each stock. This way we are able to determine a
switching point in the size of the biases between the two estimators.

The theoretical results stipulate that the relative size of the bias changes as
a function of α̂. Table 1 portraits this pattern for the securities in the CRSP
database. For these stocks the switch point is around α̂ = 3. It is difficult to
determine the exact switch point for real data. This is because β, in the bias
of the semi-parametric quantile estimator, is not estimated. In addition, the
Hill estimator is estimated with a bias. This makes it difficult to determine
the exact switch point. It is encouraging that we see a monotonic decline in
the average difference as α̂ increases. This is supportive of the result that
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Table 1: CRSP data

All α̂ < 2 2 < α̂ < 3 3 < α̂ < 4 4 < α̂ < 5 α̂ > 5
r = 2, 230 r = 13 r = 712 r = 1, 001 r = 442 r = 62

Mean -0.003 0.074 0.010 -0.005 -0.017 -0.026
Median -0.011 0.074 0.005 -0.010 -0.017 -0.026

Ste. dev. 0.031 0.072 0.039 0.022 0.019 0.018
1% quantile -0.059 -0.038 -0.063 -0.051 -0.063 -0.085
99% quantile 0.109 0.194 0.138 0.064 0.045 0.031

Rank sum test 0.070 0.305 0.397 0.162 0.003 0.047
This table reports the difference between the largest order statistic and semi-parametric
quantile estimator for US stocks. These are stocks selected from the CRSP database. The
securities need to be traded on NYSE, AMEX, NASDAQ, and NYSE Arca exchanges
over the period from 01-01-1995 till 01-01-2011. The table reports various statistics on
the distribution of the difference between the two estimators. Here r is the number of
different stocks in the different buckets. To determine the number of order statistics for
the Hill estimator we use the KS distance metric described in Danielsson et al. (2016).

the bias of the EVT based quantile estimator overtakes the bias of the non-
parametric quantile estimator. The results for the median convey the same
story.

The 1% and 99% quantiles of the buckets show that although the mean and
median showcase a switch between the severity of the bias of the quantile
estimators, this might be statistically insignificant. Therefore, we employ
the rank-sum test to test for the difference in size of the observations of
the empirical distribution from the SP and EA estimator. We find that
for the lighter heavy tailed stock returns the estimates from the estimators
are significantly different from one another. The empirical distribution of
the semi-parametric quantile estimator tends to have larger values than the
distribution of the non-parametric quantile estimator. For low values of α̂
the difference is in the expected direction, but insignificant.

3 Conclusion

With worst-case analysis becoming increasingly common in both policymak-
ing and practice, it is of interest to evaluate the qualities of common methods
for such applications. The simplest, and perhaps the most common way is to
estimate the worst-case by taking the most negative outcome in the historical
sample. Alternatively, one could estimate the lower tail of the distribution
by semi-parametric methods and use that to calculate the worst-case.

In our main conclusion, either method is best, depending on how heavy
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the tails are and their specific shape. Generally, for the heaviest, the semi-
parametric approach is best, and as it thins, the historical minima eventually
becomes better.
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