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Abstract

This paper analyzes the reliability of standard approaches for finan-
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and expected shortfall, their small sample properties, the scope for
underreporting risk and how estimation can be improved. Overall, we
find that risk forecasts are extremely uncertain at low sample sizes,
with value–at–risk more accurate than expected shortfall. Value–at–
risk is easily deliberately underreported without violating regulations
and control mechanisms. Finally, we discuss the implications for aca-
demic research, practitioners and regulators, along with best practice
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1 Introduction

Much analysis, be it in the practitioner, academic or policy worlds, makes
extensive use of statistical risk measures. Still, in spite of their prevalence,
the performance of such risk measures in operational situations is surpris-
ingly poorly understood. This is a concern since minor variations in model
assumptions can lead to vastly different risk forecasts for the same portfo-
lio, forecasts that are all equally plausible ex–ante. That is problematic for
many applications, especially where the cost of type I and type II errors is
not trivial.

Addressing this issue motivates our work here. We investigate the perfor-
mance of the most commonly used measures of risk under typical usage
scenarios, analyzing the most common practices in statistical market risk
modeling, identify under what conditions they deliver reliable answers, when
and how they fail to live up to expectations, how they can be manipulated
and when they should not be used. Ultimately, we make recommendations
to academics, practitioners and regulators on the use of statistical risk mea-
sures.

Statistical risk measures play a key role in financial decision–making, starting
with Markowitz’s (1952) mean variance–analysis. Volatility is the appropri-
ate risk measure in the special case of normally distributed asset returns and
for elliptically distributed returns in mean–variance analysis. However, we
have known, at least since Fama (1963) and Mandelbrot (1963), that finan-
cial returns are fat tailed, implying that volatility is not the right way to
measure risk except when warranted by specific applications.

In response, a number of risk measures that do no depend on an assumption
of return normality have been proposed. The first of these, and the most
prominent, is JP Morgan’s 1993 value–at–risk, VaR. Since then a large num-
ber of alternatives have been suggested, however, the only one to get serious
traction is expected shortfall, ES, (Artzner et al., 1999). VaR and ES have
seen increasingly widespread use in decision–making, in no small part due to
the Basel Committee choosing it as the measure of market risk in the Basel
I accord in 1996. The Committee is now set to replace VaR by ES in Basel
III; see the Basel Committee on Banking Supervision (2014).

The academic finance literature has made extensive use of statistical risk
measures. Such work is usually based on the simplest risk measure of all,
volatility. A number of papers relax the normality assumptions and explicitly
use risk measures like VaR or ES. For example, Guptaa and Liang (2005) use
VaR to calculate the capital adequacy for hedge funds and Patton (2009) uses
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VaR as his definition of neutrality in his test of the neutrality of hedge funds.
More broadly, Ibragimov et al. (2011) study diversification behavior under
VaR constraints and Agarwal and Naik (2004) consider optimal portfolio
construction under a mean–ES framework and Christoffersen et al. (2012)
use ES for measuring dynamic diversification benefits in portfolios. ES has
also been used as hedging criteria, e.g. by Cummins et al. (2004) who consider
the catastrophic–loss index options to hedge hurricane losses. Furthermore,
both VaR and ES have been used as the basic ingredient for constructing
systemic risk measures as by Acharya et al. (2010), Brownlees and Engle
(2015) and Adrian and Brunnermeier (2016).

The received wisdom maintains that VaR is inherently inferior to ES, a view
supported by three convincing arguments. First, VaR is not a coherent mea-
sure unlike ES, as noted by Artzner et al. (1999). However, Dańıelsson et al.
(2012) show that VaR is also coherent provided the second moment of asset
returns is defined. Second, as a quantile, VaR is unable to capture the risk
in the tails beyond the specific probability, while ES accounts for all tail
events. Finally, it is easier for financial institutions to manipulate VaR than
ES. Here manipulation refers to cherrypicking certain risks that can lead to
a situation in which either a given risk measure cannot reflect the chosen
risk, or it is difficult to detect a misestimation, usually underestimation, of
the given risk measure. Perhaps swayed by the theoretical advantages, ES
appears increasingly preferred both by practitioners and regulators, most sig-
nificantly as expressed by the Basel III Proposal. While the Proposal is light
on motivation, the little that is stated only refers to theoretic tail advantages.
The main theoretic disadvantage of ES over VaR is that while it is relatively
straightforward to backtest VaR since we can compare predicted quantiles to
actual observed returns, it is harder to backtest ES since one would need to
compare a prediction of an expectation to some estimated expectation. The
picture is not as clear cut once one looks at the practical implications. ES is
estimated conditional on VaR and may therefore just increase the estimation
error. Alternatively, because it smooths out the tails, it may be estimated
more precisely.

Outside of academia, statistical risk measures are firmly embedded in finan-
cial regulations and are set to play an ever increasing role in how financial
institutions operate. This applies now to the banking industry globally and
most of the insurance industry. If the indications from the G20 and the Fi-
nancial Stability Board are anything to go by, larger asset managers will be
included soon. Therefore, the bulk of the financial sector either is required,
or may be required to use statistical risk measures, typically VaR or ES, as
a key ingredient in how they manage risk and determine capital. Once a
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rather specialist area, risk measures are of central importance to policymak-
ers and industries alike and critical to decisions involving trillions of dollars
worldwide, every year.

In spite of all of these applications, there are few studies of the practical
properties of the risk measures. Two examples are Alexander and Sarabia
(2012) who develop a framework for quantifying model risk, including the
uncertainty in statistical risk measures, while Aussenegg and Miazhynskaia
(2006) demonstrated via bootstrapping that the uncertainty in VaR estima-
tion is considerable. Despite that, there is plenty of work on the theory,
asymptotics and properties of particular estimators for risk measures, much
less is known on what sort of estimation accuracy end users may expect. We
surmise that an important reason relates to computational difficulties, we
are estimating not only the risk measures but also the uncertainty of those
estimates.

Our work is different from the many studies focussed on the performance
of statistical methods. The performance of a given estimation method for
risk measures is usually evaluated by checking whether the point estimate
obtained from the method can predict large downside movement of the un-
derlying time series in an out-of-sample exercise; see, e.g. Berkowitz and
O’Brien (2002). Instead, we focus on the estimation uncertainty of a given
method, i.e. not only the point estimate, but also the distribution of the
potential estimated risk measure. In this regard, our study is not limited to
a specific statistical method.

A large number of statistical methods for estimating VaR have been pro-
posed, ranging from nonparametric historical simulation (HS) to highly so-
phisticated parametric methods. Amongst end users, there is a marked pref-
erence for more simple, and hence more easily implemented methods, and as a
practical matter, only a handful have found significant traction, as discussed
in Dańıelsson et al. (2016). Of these, all but one depend on some parametric
model, while one, HS, is model independent, which is what we opted for. It
is a commonly used method, 60% of the US banks considered by O’Brien
and Szerszen (2014) use HS. More fundamentally, the good performance of
a specific parametric model is usually driven by the fact that the model is
close to the data generating process (DGP) and it is not possible to find a
parametric model that performs consistently well across all DGPs. Although
HS is the simplest estimation method, it has the advantage of not being de-
pendent on a particular parametric DGP, and any other method would be
biased towards its particular DGP, creating an uneven playing field.

We address our questions of interest from both theoretic and empirical points
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of view. We start with investigating the uncertainty in the risk of stocks from
the universe of stock returns in the Center for Research in Security Prices
(CRSP) dataset. We follow that by theoretic and simulation analysis which
allows us to study the properties of the risk measures when we know the
DGP.

In our first contribution, we study whether the estimation of risk measures
is robust when considering small — and typical in practical use — sample
sizes. Although the asymptotic properties of risk measures can be established
using statistical theories, known asymptotic properties of the risk forecast
estimators might be very different in typical sample sizes such as the 250 daily
observations used by the financial authorities in the Basel traffic light system
for backtesting VaR 99%. We find that as the sample size gets smaller, the
estimation uncertainty of both VaR and ES becomes extremely large. At the
smallest samples, often the most commonly used in practice, the uncertainty
is so large that the risk forecast can be as low as half the true value, or
three times the true. In addition, the confidence interval around the risk
forecasts is very far from being symmetric, the upper 99% confidence bound
is a multiple of the forecast, which obviously cannot be the case for the
lower confidence bound. This means that if one uses the standard error as a
measure of uncertainty, it will be strongly biased downwards.

While many readers will not be all that surprised by the estimation uncer-
tainty, we, at least, did not expect it to be as high as it turned out to be.
Certainly, the implications do not seem to be well understood, even among
policymakers and regulators with a specialist interest in this area. Other
end–users, such as senior managers and regulators or non–expert users, often
have a tendency to attribute a higher degree of faith in the risk measures
than is warranted. Therefore, the fundamental and novel contribution of
our work is the formal documentation of when risk measures work, how one
should implement them, what one should be worry about, and what should
be avoided.

We then investigate whether commonly used methods for evaluating the qual-
ity of risk estimates, both in–sample and out–of–sample, can be affected by
the large estimation uncertainty. Focusing on the Basel traffic light approach
and VaR, we find that for any entity subject to control by a risk measure, it
is straightforward to underreport risk while remaining fully compliant with
the letter of the control rule. Perversely, the entity is incentivized to pick the
highest amount of tail risk because that allows it to maximize the amount of
underreporting, and by violating the letter of the law, it might pick less tail
risk.
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In our third contribution, we investigate whether one can exploit the fact that
non–extreme risk is estimated much more accurately than more extreme risk
to create a scaling factor for risk across probabilities — probability shift-
ing. That is indeed possible, at the expense of some uncertainty, giving the
end user the opportunity to choose whether the estimation uncertainty is
outweighed by the scaling inaccuracy.

We finally find that ES is estimated with more uncertainty than VaR. Since
VaR and ES are in most cases related by a small constant, they are concep-
tually equally informative, and we find that in the special case of Basel III,
the 97.5% ES is essentially the same as the 99% VaR. Even if ES is theoret-
ically better at capturing the tails, in practice one might just multiply VaR
by a small constant to get ES. There is however one reason to prefer ES, it
is harder to manipulate.

The structure of the paper is as follows. We discuss the various properties of
the risk measures in Section 2, the scope for underreporting risk in Section 3
and probability shifting in Section 4. We discuss the specific implications for
financial regulations in the concluding Section 5. Mathematical proofs are
relegated to the Appendix.

2 How accurate are risk measurements?

The statistical measurement of risk is firmly embedded in the academic fi-
nance literature, the operations of financial institutions and financial regu-
lations. In spite of their prevalence, surprisingly little is known about the
performance of risk measures, especially in common usage scenarios. It is
that deficiency that motivates our work in this section.

To start with, consider the accuracy of estimating VaR and ES at two prob-
ability levels, 90% and 99% for the CRSP universe of stocks across three
sample sizes, 300 days, 1,000 days and 5,000 days or 20 years. While we do
not know the true value of the risk measures, and so cannot directly validate
the estimation uncertainty, it is straightforward to approximate it by a block
bootstrapping procedure. We used the universe of CRSP stocks from 1926
to 2014 and report the results in Table 1, reporting uncertainty, both stan-
dard error and 99% confidence bonds around a risk measure normalized to
one, where we use the HS estimation procedure. The details of the sample
selection procedure and the bootstrap is given in the footnote to the Table.

These results came as a surprise to us. At the lowest sample sizes, 300
days, the estimation uncertainty is considerable. For example, we cannot
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Table 1: The accuracy of risk estimation in CRSP stocks.

Note: The table shows the accuracy of estimating VaR and ES at two probability levels,
90% and 99% using daily returns on all liquid traded stocks on NASDAQ, NYSE or
AMSE from 1926 to 2014. A stock is included if on the first day of the sample the
stock has a share price above 5$, its market capitalization exceeds the 10% quantile of
the market capitalization of all stocks traded on NYSE on that day, and has 600 or
more observations. Each stock return series is split into non–overlapping samples with
sample sizes N = 300, 1, 000, 5, 000. The samples from different stocks are pooled together.
The risk measure is estimated for each sample. In addition a bootstrapped sample is
constructed by bootstrapping N/B blocks with a block size B. The standard error of the
risk estimate for a given sample is calculated by the standard deviation of K bootstrapped
estimates, while the 99% confidence interval is given by the 0.5% and 99.5% quantiles of
the K bootstrapped estimates. The reported standard errors and the upper and lower
bound of the 99% confidence intervals are the average across all samples.

VaR ES

N p Samples standard 99% conf. standard 99% conf.
error bound error bound

300 1% 77,669 (0.21) [0.65,1.49] (0.16) [0.63,1.28]
1,000 1% 21,188 (0.13) [0.74,1.35] (0.14) [0.69,1.35]
5,000 1% 2,538 (0.07) [0.84,1.20] (0.09) [0.80,1.24]

300 10% 77,669 (0.12) [0.75,1.30] (0.11) [0.74,1.29]
1,000 10% 21,188 (0.08) [0.81,1.23] (0.09) [0.80,1.24]
5,000 10% 2,538 (0.05) [0.89,1.13] (0.05) [0.87,1.15]

discriminate between for VaR 99% in the range of 0.65 to 1.49. When the
sample size hits 20 years, or 5000 observations, the VaR 99% confidence
bound is still between 0.84 and 1.2. Since as a practical matter, we are more
likely to be closer to 300 days than 5,000 days in most cases, the estimation
uncertainty is considerable.

Furthermore, ES is estimated with more uncertainty than VaR for the two
longer sample sizes. This results contradict the prevailing wisdom that ES
is superior to VaR. However, such arguments are based on the theoretical
properties of the two risk measures, while our results come from finite sample
empirical results.

Finally, the estimation uncertainty problem is mitigated when considering
lower level probability, such as the 90% shown in the Table, where the re-
duction in estimation uncertainty is most pronounced for the lowest sample
size, 300. This will be important to our proposal in Section 4.

This leaves the question of what is behind these results. Do they arise because
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of the particular stocks we chose and the way we did the bootstrap procedure,
or is this something more general at work here? To answer the question,
we employed both theoretical analysis of the statistical properties of risk
measures as well as a Monte Carlo procedure.

2.1 Theoretic analysis

The empirical CRSP results above are confirmed by theoretic analysis. To
start with, denote the profit and loss of a trading portfolio as PL and let
X ≡ −PL, so we can indicate a loss by a positive number. Suppose X
follows a distribution function F and obtain a sample of size N from that
distribution. Indicating a particular probability level by p, denote VaR by
qF := qF (p).

Consider the best case scenario where the data is i.i.d. and we know it
is i.i.d. If we also had to estimate the dynamic structure, the estimation
uncertainty would be further increased. In Extreme Value Theory (EVT),
heavy–tailedness is defined by regular variation in the tail of F :

lim
t→∞

1− F (tx)

1− F (t)
= x−α,

where α > 0 is known as the tail index. For the student–t distribution, the
tail index equals the degrees of freedom, with the Gaussian as the special
case where α = +∞. Note that the assumption of regular variation only
applies to the right tail of F and thus does not impose any restriction on the
rest of the distribution, allowing this approach to capture a large range of
models. An assumption of regular variation in the right tail is sufficient for
inference on the distribution of tail risk measures.

Since we are dealing with tail quantiles with p close to 1, we employ the
asymptotic theory for tail quantiles as in Einmahl (1992).1 Theoretically, we
consider an intermediate sequence kq := kq(N) such that kq → ∞, kq/N → 0
as N → ∞, and then investigate q̂F with a probability level 1 − kq/N . By
ranking the N observations X1, · · · , XN as XN,1 ≤ XN,2 ≤ · · · ≤ XN,N , the
HS estimate for the VaR is

q̂F (1− kq/N) = XN,N−kq .

1The general asymptotic theories of empirical quantile estimators are known, see, e.g.
Theorem 6.2.1 in Csörgő and Horváth (1993).
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The following proposition gives the asymptotic properties of the estimator
q̂F (1 − k/N) for a general k sequence under heavy–tails. The proof is post-
poned to the Appendix.

Proposition 1 SupposeX1, · · · , XN are i.i.d. and drawn from a heavy tailed
distribution function F with α > 2. Denote U = (1/(1−F ))← as the quantile
function. Then U(tx)/U(t) → x−1/α as t → ∞. Assume the usual second order
condition that quantifies the speed of convergence in this limit relation (see,
e.g. Condition (2.3.22) in de Haan and Ferreira (2006)):

lim
t→∞

U(tx)
U(t)

− x1/α

A(t)
= x1/αx

ρ − 1

ρ
,

for a constant ρ ≤ 0 and a function A(t) such that limt→∞A(t) = 0. Suppose
k := k(N) is an intermediate sequence such that as N → ∞, k → ∞,
k/N → 0 and

√
kA(N/k) → λ with a constant λ. Then, we have that as

N → ∞,

√
k

(

q̂F (1− k/N)

qF (1− k/N)
− 1

)

d→ N

(

0,
1

α2

)

.

Proposition 1 shows that the HS VaR estimator is asymptotically unbiased
and provides a way to approximate its asymptotic variance as 1/kα2. The
thinner the tail (i.e. the higher α), the more accurate the VaR estimate.

The estimation uncertainty has a quantifiable economic impact. Given the
true value of the quantile qF (1− k/N), Proposition 1 implies that the lowest
possible estimate q̂F (1− k/N) can be as low as

qF (1− k/N)(1− 1√
k

1

α
Φ−1(1− (1− τ)/2)),

without being rejected under the confidence level τ < 1.

The true value of the quantile qF (1−k/N) ensures, by definition, that Pr(X >
qF (1 − k/N)) = k/N We now evaluate the probability that X is above the
lowest possible estimate, and compare that to the intended probability k/N .
From the heavy–tailed property, we get that

Pr(X > qF (1− k/N)(1− 1√
k
1
α
Φ−1(1− (1− τ)/2)))

k/N

≈(1− 1√
k

1

α
Φ−1(1− (1− τ)/2))−α

≈1 +
1√
k
Φ−1(1− (1− τ)/2)
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Putting this calculation in real perspective, consider the case for estimating
VaR(99%) with a sample size N = 1000. k is then 10. Suppose we consider
a typical confidence level such as τ = 95%. Then the ratio calculated is at
1+ 1/

√
10× 1.96 = 1.62. In other words, while we aim to get a VaR such that

the probability of exceeding the VaR is 1%, with a reasonable estimate (not
significantly different from the true value under 95% level of confidence), the
probability of exceeding the estimated VaR can be as high as 1.62%. In a
relative comparison, this is more than 60% higher.

Using ES does not help in reducing the estimation uncertainty. Denote ES at
probability p by eF := eF (p). Like we did for VaR, since we are dealing with
p close to one, we can use an intermediate sequence ke such that ke → ∞
and ke/N → 0 as N → ∞. We then estimate ES at the level 1− ke/N as:

êF (1− ke/N) =
1

ke

ke
∑

j=1

XN,N−j+1.

We have similar theoretic results for ES as we did for VaR.

Proposition 2 Suppose α > 2. Under the same conditions as in Proposition
1, we get that as N → ∞,

√
k

(

êF (1− k/N)

eF (1− k/N)
− 1

)

d→ N

(

0,
2(α− 1)

α2(α− 2)

)

.

By applying Propositions 1 and 2, we can compare the accuracy of VaR and
ES as in the following corollary.

Corollary 3 Assume the same conditions as in Proposition 2. Consider
VaR and ES at the same probability level p. Then, as N → ∞,

Var
(

êF (p)
eF (p)

)

Var
(

q̂F (p)
qF (p)

) → 2(α− 1)

α− 2
.

In the specific case of the Basel II and III risk measures, with VaR at proba-
bility level p1 and ES as probability level p2 such that (1− p2)/(1− p1) = 2.5.
Then, as N → ∞,

Var
(

êF (p2)
eF (p2)

)

Var
(

q̂F (p1)
qF (p1)

) → 4(α− 1)

5(α− 2)
=: g(α).
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The corollary shows that the estimation inaccuracy of ES is higher than that
of VaR. When considering the same probability level, since 2(α−1)/(α−2) > 2,
the relative estimation variance of ES is at least twice larger than that of VaR.
When considering different probability levels, like VaR(99%) and ES(97.5%),
and noting that the function g(α) is decreasing in α and the break–even point
for g(α) = 1 is reached at αbe = 6. This means that for α < 6, the estimation
uncertainty in ES(97.5%) is higher than that of VaR(99%).

We estimated α for the stocks in our CRSP and find that the mean α = 3.31,
and for all stocks, 1.71 < α < 5.78, and therefore the empirical result in Table
1 that VaR is better estimated than ES s is not all that surprising. It is what
theory predicts.

2.2 Monte Carlo analysis

While the theoretic results above provide guidance as to the asymptotic
performance of our risk measures, they are only asymptotic and do not tell
us whether the asymptotic theory holds in typical sample sizes, which may
range from a couple of hundred to a few thousand. For that reason it is
of interest to investigate the properties of the risk estimates for a range of
sample sizes that might be encountered in practical applications, such as
those in the CRSP analysis above. We do that by means of an extensive
simulation study.

We focus on i.i.d. observations drawn from the Student–t distribution, the
i.i.d. Pareto distribution and a GARCH model with Student–t distributed
innovations. The qualitative results from all three are similar, so we only
present the Student–t results here, leaving the others to the web appendix.
The sample size, N , ranges from 200 to 100,000, where for presentation
purposes, we denote sample sizes above 300 as years with a year consisting
of 250 observations. The results are generated for a range of probabilities.
Such a procedure is repeated S = 2× 107 times, for a discussion on why this
simulation size is needed see Appendix A.1. We then report the standard
error of the VaR estimates relative to the true VaR, as well as the 99%
empirical confidence interval. A representative subset of the results is shown
in Table 2, with the full results in the web Appendix.

The results from Table 2 are in line with both the empirical CRSP and
theoretic results above. The quality of the estimation increases as the sample
size gets bigger, the tail thins and the probabilities fall. Furthermore, ES it
is always estimated more inaccurately than VaR.
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Table 2: VaR and ES 99% finite sample performance
Note: For each given α, N observations from a standard Student–t distribution with
degree of freedom ν = α are simulated. For each simulated sample, risk is estimated and
then divided by its true value. The resulting ratio is regarded as the relative estimation
error. The table reports the standard error and 0.5% and 99.5% quantiles of these ratios
across the S = 2 × 107 simulated samples.

VaR ES

sample α p se 99% conf. se 99% conf.
size interval interval

300 days 2.5 99% 0.33 [0.61,2.46] 0.56 [0.42,3.42]
300 days 2.5 90% 0.11 [0.76,1.34] 0.20 [0.68,1.76]
300 days 5 99% 0.18 [0.72,1.70] 0.22 [0.61,1.82]
300 days 5 90% 0.09 [0.79,1.27] 0.10 [0.78,1.29]

4 years 2.5 99% 0.15 [0.74,1.51] 0.31 [0.59,2.27]
4 years 2.5 90% 0.06 [0.86,1.17] 0.11 [0.80,1.39]
4 years 5 99% 0.09 [0.82,1.29] 0.12 [0.75,1.40]
4 years 5 90% 0.05 [0.88,1.14] 0.05 [0.87,1.15]

50 years 2.5 99% 0.04 [0.91,1.11] 0.09 [0.84,1.31]
50 years 2.5 90% 0.02 [0.96,1.04] 0.03 [0.93,1.10]
50 years 5 99% 0.02 [0.94,1.07] 0.03 [0.92,1.10]
50 years 5 90% 0.01 [0.96,1.04] 0.02 [0.96,1.04]

What is surprising, at least to us, is how large these changes are. With a
tail index 2.5, probability 99% and sample size 300 days, the 99% confidence
bound is [0.61,2.46] where the true value is one. It is highly asymmetric
implying that if one would get misleading answers by using the standard
error (0.33). If one goes to the other extreme with 50 years of data, tail
index 5 and 90% probability, the VaR estimates are quite reasonable.

2.3 Intermediate conclusion

We believe these are the first results to comprehensively demonstrate the ac-
curacy of statistical risk measures in typical applications. While a number of
studies focus on comparing empirical methodologies of estimation procedures
or theoretic properties of risk measures, our focus is on how risk estimation
performs in typical usage scenarios.

Two main results emerge. First, the measurement of risk with a measure
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like VaR an ES is highly inaccurate, especially in the smaller sample sizes
common in many applications, hundreds or perhaps a few thousand days. At
300 days, the 99% confidence bound for VaR is 0.65 to 1.49, in our sample
of the universe of CRSP stocks, narrowing down to 0.84 to 1.20 when the
sample size increases to 5000 days. This result extends across the empirical,
theoretical and Monte Carlo analyses.

In our second result, we find that ES is generally estimated more inaccurately
than VaR. This is at odds with the received wisdom in the regulatory, prac-
titioner and academic domains where ES it is usually preferred. We surmise
that this is because from a theoretical point of view, ES is superior to VaR.
However, we demonstrate that this does not extend to practical applications.
As a practical matter, when returns are fat tailed, ES is just a multiple of
VaR, where the multiplication factor depends on the tail index. If ES is
needed, the end–user might just as well estimate VaR and multiply it by a
constant. Considering that it is much harder to backtest ES than VaR, there
seems to be little reason to pick ES for most practical applications.

3 On the scope for underreporting risk

The measurement of risk, perhaps by VaR or ES as in the last Section, is
not all that useful unless the end–user has some way of validating the quality
of the risk measure. The problem facing those aiming to verify and control
risk is that any mechanism used as the control device can skew incentives for
taking risk, even if the intention is to fully comply with both the letter and the
spirit of the control. For example, as we show below, in the case of the current
market risk regulations, Basel II, the specific control mechanism perversely
incentivizes banks to load up on tail risk. Even if the senior management of
a bank does not intend to act in this way it is entirely possible that internal
incentives (such as bonuses) may incentivize traders to do so. This has the
effect of undermining the effectiveness of regulations, because of the impact
noted by Perotti et al. (2011) where with sufficient tail risk, almost no level
of capital is sufficient to protect an institution in times of failure.

This is complementary to the theoretical work of Cuoco and Liu (2006) who
consider the optimal VaR reporting for banks. Our approach focuses on
the room for potential underreporting. If a bank is able to measure the
probability of detection, the bank can ex ante load up tail risk to achieve their
desired underreporting room. Our results also echo Marshall and Prescott
(2006) who find when the authorities control the variance of a portfolio, same
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as VaR control under normality, the banks try to increase the mean return
by taking additional risk.

When it comes to validating risk forecast models, there are two main ap-
proaches one can take, observe model forecast performance in–sample or
out–of–sample. Confusingly, the term backtesting can imply either approach,
depending on who uses the term. Regulators, in particular, often use back-
testing for out–of–sample analysis.

The banking regulation authorities, in Basel I, opted for an out–of–sample
approach with the so–called “traffic light” system, based on how often actual
portfolio losses exceed their VaR (violations) over a testing window. For
example, to backtest VaR(99%), the traffic light system is based on the
number of violations (l) in 250 days: if l is less than five the bank is in the
green zone, if l is between five and nine the bank is in the yellow zone and
the red zone for more violations. By the Bernoulli properties of violations, it
follows that the probability (τ) of being in each zone, if the model is correctly
specified, is 89.22%, 10.76% and 0.025%, respectively. In what follows, we
consider a more general setup of backtesting VaR(p) with l violations in a
testing window with size W .

Our results below apply only to the specific case of VaR not ES, as the
former is based on a quantile, and hence straightforward to backtest, unlike
ES where additional assumptions have to be made, since it is not elicitable
(see e.g. Gneiting, 2011).

3.1 Risk underreporting room

From a bank’s perspective, the specific backtesting mechanism may gives the
bank the room to underreport the VaR while remaining compliant with the
letter of the regulation. When backtesting a bank’s reported VaR, the traffic
light system allows for l violations in W days. Instead of viewing this as
checking the number of violations, an alternative view is that, the regulator
is estimating a VaR at a probability level 1− l/W using the W observations
in the testing window, and then compare the estimate with the number
reported by the bank. Since the regulator would also suffer from estimation
uncertainty, the bank can explore that by reporting a lower value while still
retain the probability of a green zone. Mathematically, we calculate the ratio
between the lowest possible value that can be reported by a bank and the
true VaR, denoted as the underreporting room (UR). The UR is related to
the estimation uncertainty issue raised in the last Section, because a bank
can effectively pick a value that lies within the confidence band of the VaR
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estimate as the reported VaR.

Consider the Basel traffic light approach. The regulator chooses p, W and
l. Suppose a bank focuses on the green zone, where the bank would have
its own target of achieving the green light with probability τ and can choose
the tail thickness of its portfolio α. Then the bank’s UR depends on the five
variables and is denoted by UR(τ, α; l,W, p), with the first two chosen by the
bank and the last three set by the regulator.

Suppose a bank knows the values of the P/L in the testing window, Xt, for
t = 1, 2, · · · ,W . Then the lowest possible value a bank may report while
staying in the green zone is the (l + 1)th highest order statistic, XW−l,W
plus a small increment, set without loss of generality to zero. This gives
exactly l violations. Ex ante, the order statistic is unknown, rather, only the
distribution of X is known. Therefore, the bank has to study the property
of the distribution of XW−l,W denoted as G.

Following Proposition 1, since l/W is a small positive number, the asymptotic
distribution of XW−l,W is given as

XW−l,W

qF (1− (l + 1)/W )
− 1 ∼ N

(

0,
1

(l + 1)α2

)

.

Hence, we get that approximately, if the bank intends to get a green light
with probability τ , the bank should report the τ -quantile of the distribution
G as

qF (1− (l + 1)/W ) ·
(

Φ−1(τ)
1√

l + 1α
+ 1

)

,

where Φ is the standard normal distribution function. We compare this value
to the true VaR(p). Note that

qF (p)

qF (1− (l + 1)/W )
≈
(

(l + 1)/W

1− p

)1/α

=

(

l + 1

W (1− p)

)1/α

,

which follows from the assumption of heavy tailed returns. This implies that
the UR is

UR(τ, α; l,W, p) :=
qF (1− (l + 1)/W ) ·

(

Φ−1(τ) 1√
l+1α

+ 1
)

qF (p)

≈
(

W (1− p)

l + 1

)1/α(

Φ−1(τ)
1√

l + 1α
+ 1

)

. (1)

We show a typical UR ratio in Figure 1 for the green Basel zone. Then,
p = 0.99, W = 250, l = 4, where the regulator targets τ = 0.8922. The
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Figure shows four cases, the first where the bank complies with the letter,
but not necessarily the spirit, of the regulations (τ = 89.22%), two others
where it deliberately does not (τ = 85% and 80%), and finally one where it
voluntarily takes a more conservative position (τ = 95%.) We capture this
by calculating the UR(τ, α; 4, 250, 0.99) against α for four different levels of
τ , 95%, 89.22%, 85% and 80%.

Figure 1: Underreporting room versus tail index
Note: The figure shows the UR ratio against the tail index (α) for four targeted levels of
probability falling in the green zone (τ). The UR ratio is the ratio between the lowest
possible value that can be reported by a bank and the true VaR defined in (1). Here the
parameters are W = 250, l = 4 and p = 0.99. The dash (blue), dotted (green), dash-dotted
(purple) and long dash-dotted (red) lines correspond to τ levels at 89.22%, 85%, 80% and
95% respectively.

2 3 4 5 6 7
Tail index

85%

90%

95%

100%

R
ep

or
te

d
 V

aR
/

T
ru

e 
V

aR P(Green)=0.95
P(Green)=0.892
P(Green)=0.85
P(Green)=0.8

Two key results emerge from the figure. Even if the bank intends to comply
with regulations, it has some room for underreporting risk, in the case of
the typical α = 4, by at least 5%. Also, the more heavy tailed its portfolio
returns are, the more room the bank has to underreport risk. Only when a
bank is seriously concerned about not obtaining a green light (τ = 0.95), it
may overreport the risk provided that its portfolio is not very heavy tailed.

In addition, we plot the UR ratio against various levels of τ ranging from
80% to 95% for three given levels of α, α = 2, 4 and 7, in Figure 2. We
observe that the underreporting room shrinks as the targeted probability of
being in the green zone τ increases. Across different levels of asset tail risks,
the underreporting room is more pronounced for heavier tails (lower α).

These results are directly affected by the size of the testing window. We
further investigate this by increasing W . With a properly set l, we calculate
how the UR is affected by sample size, reported in Figure 3. The UR is
shrinking with increasing sample sizes, 250, 500 and 1,000, at τ = 90%. For
α = 3, the UR is 6% when the sample sizes one year, falling to 2% once the
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Figure 2: Underreporting room versus targeted probability
Note: The figure shows the UR ratio against the targeted levels of probability falling in
the green zone (τ) for three levels of tail index (α). The UR ratio is the ratio between
the lowest possible value that can be reported by a bank and the true VaR defined in (1).
Here the parameters are W = 250, l = 4 and p = 0.99. The dash (red), dotted (green)
and dash-dotted (blue) lines correspond to α levels at 2, 4 and 7 respectively.
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Figure 3: Underreporting room with different sample size
The figure shows the UR ratio against the tail index (α) for different sizes of the testing
window (W ). Here the parameters are p = 0.99 and τ = 90%. The dash (red), dot-
ted (green) and dash-dotted (blue) lines correspond to W levels at 250, 500 and 1000
respectively. The parameter l is accordingly adjusted to 90% quantile of a Bin(W ,1 − p)
distribution.
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Taken together, these results are especially problematic for out–of–sample
model evaluation methods, like the Basel traffic light approach, suggesting
that 250 days are not sufficient. Unfortunately, increasing that to a more
accurate thousand days would leave the regulators to wait four years before
they can pass judgment on the trading book risk models.
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3.2 Risk taking under estimation uncertainty

What is more of a concern to us is the observation that the fatter the tails
of the returns on the underlying trading portfolio, the more room a financial
institution has to underreport risk. Consider a financial institution that is
seen by the authorities as having too little trading book capital, or conversely
too many risky assets. This institution may of course opt to raise capital or
sell assets, but under current rules it has a third option because of the UR.
In that case, suppose the bank underreports a fraction f of its risk. In what
follows, we focus on the probability of not being in the red zone, but the
same qualitative result obtains for the green zone.

Suppose the bank intends to achieve a probability of not being in the red
zone light at level τ . Then there is an upper bound for the tail index the
bank can accept, ᾱ = ᾱ(f, τ). In other words, if the bank has a portfolio with
a tail index α > ᾱ and intends to achieve a probability of having a red light
at level p, the corresponding UR is limited such that UR(τ, α; l,W, p) > f .
Therefore, we can use the inverse function of (1) to infer the maximum level
ᾱ that is acceptable. This can be achieved by solving UR = f with a given
τ , l, W and p to obtain ᾱ(f, τ ; l,W, p).

Figure 4 shows the value of ᾱ(f, p; l,W ) for l = 9, W = 250. We plot ᾱ
against against different level of τ for three level of f , 90%, 85% and 80%.
The vertical line indicates the designed probability of having a red light in
the traffic light system. In other words, if the bank fully intends to comply
with the regulations, it sticks to that target probability.

The striking conclusion is that as the bank’s actual level of compliance in-
creases, the more tail risk it needs to introduce into its portfolio. This arises
because if the bank has a fixed underreporting target, while not wanting to
be detected by the test for having too much risk, the only remaining instru-
ment at its disposal is to exploit the estimation uncertainty and increase tail
risk.

The perverse outcome is that the lower level of actual compliance is, the safer
its portfolio becomes from the point of view of tail risk.

3.3 Implications

The main purpose of statistical risk measures in financial regulations and
practical applications, is to control risk–taking. Financial regulators use
such methods to set capital requirements for banks proprietary trading and
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Figure 4: Maximum acceptable tail index for a given underreporting room
The figure shows the maximum acceptable tail index (ᾱ) against the targeting probability
of not being in the red zone (τ), given a bank’s intended UR. The dash (red), dotted (green)
and dash-dotted (blue) lines correspond to three given UR levels (f) at 90%, 85% and 80%
respectively. For each given f and τ , the ᾱ is solved by inverting UR(τ, α; l,W, p) = f ,
where the function UR is defined in (1). Here the parameters are p = 0.99W = 250 and
l = 9.
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internally, financial institutions use them for multiple purposes, including
controlling traders, allocating trading capital between asset classes and com-
pensating risk–takers. From the point of view of anyone intending to control
risk–taking, our results are problematic.

In all of these cases, the incentive to take excessive risks ex ante is real as
any entity subject to control by risk measures can either manipulate risk
without changing the risk measure or taking specific tail risks to exploit the
weakness in the control process. Even if senior management fully intends
to obey the spirit as well as the letter of the rules it is entirely possible
that internal incentives such as bonuses or promotions will lead to traders
acting in this manner because maximizing risk is typically associated with
maximizing profits.

There are several ways one can exploit the weakness in the control process.
Perhaps it almost obvious is to pick an estimation method that will deliver
the desired results over a historical testing window. The potential for this is
widely discussed in the public discourse on financial regulations and especially
whether banks should be allowed to pick the model (the internal ratings
approach) or if the authorities should have partial or full control over which
model is used. However, there is no guarantee that an estimation method
that delivers a favorable result today will deliver similar favorable results in
the future, and anyone looking to take excessive risks without being detected
is likely to look elsewhere.
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A more direct and promising way to take excessive risk, while remaining
firmly compliant, is to to cherry pick trades that result in a portfolio with
the highest UR. The discussion in this Section is a clear example of this. Even
if the testing procedure signals full compliance, the bank still can report risk
that is perhaps 10% lower than it actually is. Even more worryingly the very
fact that the control mechanism incentivizes the risk taker to load up on tail
risk, perversely increasing the banks’ default probabilities and even systemic
risk.

There are some steps that could be taken to reduce the potential for excessive
risk taking. The obvious solution would be to increase the size of the testing
window, but that raises issue of having to wait too long for the outcome of
the test. One can also make use of in–sample backtests, which of course can
be made to use much longer testing windows, but the risk here is that the
model designer will know what happened and can therefore tailor the test
and portfolio composition to deliver the most desirable outcome.

One could also maintain strict Chinese walls between the risk manager and
the risk taker. The less the risk taker knows about the control process the
harder it is for her to react ex ante. This is straightforward to do internally in
financial institutions and is usually directly embedded in their internal pro-
cesses. This is not possible to do for financial regulations, since the model for
market risk capital is transparent. This is one reason why it is not advisable
to require financial institutions to use the same model for regulatory and in-
ternal risk control purposes, as many regulators desire. Another alternative
would be to use a different risk measure, such as the ES. Nevertheless, as we
have shown, it is estimated with less precision.

Besides exploiting the weakness in the control process, an alternative device
for excessive risk taking is risk manipulation. Two potential mechanisms
that may mitigate risk manipulation have been studied in the literature from
a more theoretical point of view. Colliard (2014) argues that internal models
incentivize banks to choose model strategically, proposing a remedy based
on penalizing banks with ex-ante low risk weights who then suffer what he
calls abnormal losses or failure. Another alternative would be to follow the
suggestion of Blum (2008) who propose the use of a non-risk sensitive leverage
ratio in cases where the supervisors may not be able to identify dishonest
bank behavior.
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4 Probability shifting

The discussion in Section 2 above indicates that the estimation accuracy of
risk measures increases with lower probabilities. Theoretically, the asymp-
totic variance is fractional to 1/k, where 1−k/N is the probability level in the
risk measure. If the probability level falls, k increases and thus the estima-
tion uncertainty falls. This is also validated by the results in in Tables 1 and
2 where the confidence bounds narrow sharply as the probabilities become
less extreme. This result suggests that one would be better off estimating
a model at a low probability, and scale it up to the probability needed —
probability shifting. Such an approach also has the potential to remove the
room for underreporting risk, and hence reduce the potential for excessive
risk taking.

4.1 Room for underreporting

If one applies the Basel traffic light approach to VaR 90%, the green light
zone will allow no more than l = 30 violations, where the corresponding exact
probability of being in the green zone is then 87.53% (close to but below 90%
as in the design of the traffic light system). Suppose we extend the analysis
in Section 3 to this case, where we have a bank that either intends to follow
the letter of the rule or violate it in specific ways.

We obtain the UR from (1) with W = 250, l = 30 and p = 0.90, and show
the result in Figure 5. Contrasting this figure with Figure 1, two key results
emerge. First, the room for underreporting risk is substantially reduced.
Even if the bank chooses not to comply, the UR remains small. Second, there
is virtually no difference in the UR across different tail thickness, effectively
eliminating the preference for heavy tailed assets. The same result holds if
one focuses on the red zone.

4.2 Probability shifting

Switching to VaR 90% not only reduces the absolute UR but also reduces
banks’ incentive for taking on more tail risk, ex ante. However, there are
two reasons why this may not be implemented in practice. First, as in the
discussion between VaR and ES, VaR can be manipulated, particularly for
a VaR at a less extreme probability level. Second, the scaling factor varies
across different distributions. Consequently in order to to scale VaR 90% to
VaR 99%, it is necessary to pre–estimate the tail thickness. The first issue
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Figure 5: Underreporting room with green light targets: VaR 90%
Note: The figure shows the UR ratio against the tail index (α) for three targeted levels
of probability falling in the green zone (τ). Here the parameters are W = 250, l = 30 and
p = 0.90. The dash (red), dotted (green) and dash-dotted (blue) lines correspond to τ
levels at 87.53%, 85% and 80% respectively.

2 3 4 5 6
Tail index

85%

90%

95%

100%

R
ep

or
te

d
 V

aR
/

T
ru

e 
V

aR

P(Green)=0.875
P(Green)=0.85
P(Green)=0.8

can be solved by moving to ES 90%. As it turns out, this also provides a
good solution to the second issue.

By applying the scaling rule from Dańıelsson et al. (1998) and Dańıelsson
et al. (2006), we get that

VaR(99%) ≈ 101/α VaR(90%) ≈ 101/α
α− 1

α
ES(90%).

In other words, to scale from ES(90%) to VaR(99%) we need a scaling factor

h(α) = 101/α
α− 1

α
.

The first part of the scaling law comes from 90% to 99%, and the second
from ES to VaR.

As a practical matter it would be straightforward to estimate α, for example
with the Hill (1975) estimator. However, estimating α potentially intro-
duces an additional estimation uncertainty that may distort the precision
gain from moving to a lower probability level. Therefore, we tend to choose
an h that can comply with most portfolios of banks. Notice that from the
Feller theorem (Theorem VIII.8, Feller (1971)), the heaviest tail in a port-
folio dominates. The choice of h should depends on a conservative estimate
of α, i.e. as low as possible. Empirically, most stock returns have a tail
index between 2.5 and 5 which would give h(2.5) = 1.507 and h(5) = 1.268.
Therefore, for market risk analysis, it is proper to choose h = 1.5. We use a
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Table 3: VaR 99% from probability shifting
Note: the table shows the finite sample performance of the VaR 99% estimates in a similar
simulation setup as that for Table 2. The VaR 99% in right column is estimated by first
estimating a ES 90% and then scaling that by 1.5.

N alpha VaR 99% VaR 99% from ES 90%

bias se 99% conf bias se 99% conf

300 days 2.5 1.11 0.33 [0.61,2.46] 0.93 0.19 [0.63,1.65]
4 years 2.5 1.03 0.15 [0.74,1.51] 0.93 0.10 [0.75,1.30]
10 years 2.5 1.01 0.09 [0.82,1.28] 0.94 0.06 [0.81,1.15]

300 days 3 1.09 0.27 [0.64,2.16] 0.96 0.14 [0.69,1.46]
4 years 3 1.03 0.12 [0.77,1.43] 0.96 0.08 [0.80,1.21]
10 years 3 1.01 0.08 [0.84,1.23] 0.96 0.05 [0.85,1.11]

300 days 4 1.07 0.21 [0.69,1.85] 1.00 0.11 [0.76,1.35]
4 years 4 1.02 0.10 [0.80,1.34] 1.00 0.06 [0.86,1.18]
10 years 4 1.01 0.06 [0.86,1.19] 1.00 0.04 [0.91,1.11]

300 days 5 1.06 0.18 [0.72,1.70] 1.02 0.10 [0.80,1.32]
4 years 5 1.02 0.09 [0.82,1.29] 1.02 0.05 [0.89,1.18]
10 years 5 1.01 0.06 [0.88,1.16] 1.03 0.03 [0.94,1.12]

simulation to demonstrate the accuracy of estimating VaR 99% by ES 90%
multiplying 1.5.

The simulation results in Table 3 show that the estimation error falls sharply
when using the scaling estimator. This becomes especially notable in overes-
timation, which is much less of a problem when using the scaling estimator.
The underestimation problem is also weakened in most of the cases, with
the only exception on the most heavy-tailed case (α = 2.5) with the largest
sample size (10 years). The downside of the probability shifting approach is
that as the scaling constant becomes increasingly inaccurate: compared to
the original estimated VaR 99%, the bias of the new estimate increases in
some cases.

4.3 Implications

The small sample sizes available for the estimation of risk, typically a few
hundred or at most a low thousands, create considerable problems in terms
of estimation accuracy and the room to underreport risk. These problems
become much smaller as the probabilities fall, and by p = 90%, the estimation
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results become quite reliable. While, that is not extreme enough for most
end-users, it is quite straightforward to estimate the risk at the 90% level and
scale to the 99% level, either using a typical scaling coefficient, like the 1.5
above or estimating it. What the results show that the estimation error falls
sharply when using the scaling estimator, regardless of whether the scale
is exactly correct or not, whereas the bias may increase. Ultimately, this
gives the end-user a clear trade-off between accuracy and uncertainty of the
estimate.

5 Conclusion

The focus of this paper is on three key issues in risk measuring: accuracy,
scope for underreporting and how estimation can be improved. We compare
the two most commonly used risk measures, VaR and ES, and find that both
are estimated very imprecisely. One needs half a century of daily data for
the estimators to reach their asymptotic properties and at sample sizes of
few hundred, the risk forecast retain very little information content. From
an estimation point of view, VaR is more accurate than ES, but one might
still prefer to use ES as it is harder to to manipulate than VaR.

Given existing testing methodologies, there is considerable scope for underre-
porting VaR without affecting the backtesting results. Particularly worrying
is the result that the testing methodologies incentivize financial institutions
to increase tail risk.

There are some steps that can be taken to increase the estimation quality
and the scope for underreporting, with perhaps the most fruitful, the esti-
mation of risk at a low probability, like 90% and scaling that to the desired
probability, perhaps 99%.

We suspect that these general results will not come as a surprise to most
empirical researchers. However, the degree of uncertainty was much higher
than we have anticipated, and we did not expect the existing literature to
be silent on this issue. These results will be more surprising to those users
without direct empirical experience with statistical risk measures, like most
senior decision-makers in financial institutions and regulatory agencies. Our
impression is that statistical risk measures are increasingly being imposed as
control tools throughout the financial sector, without adequate understand-
ing of the key empirical issues.

These results have particular implications to how one should use statistical
risk measures in decision–making. At the risk of overgeneralizing, there are
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three different approaches one can take. The first is to treat one carefully-
chosen risk forecast as an approximate truth, and use it to allocate portfolios
and set risk limits without too many questions asked. This is certainly the
view of the financial regulators and many a risk controller and internal audi-
tor. The second approach, which we have often witnessed in our discussion
with practitioners, is to use a statistical risk measure as an indication of the
underlying risk, one indication amongst several. The risk manager might run
several different models in parallel and make use of non-model information
in controlling risk. The final approach is to reject statistical risk forecasting
altogether. Our results validate the second approach, risk forecasts provide a
noisy signal, and so long as the end-user understands the nature of the noise,
she is well-placed to use risk forecasts in the best possible way.

While somewhat pessimistic, our conclusion is not that one should not report
risk estimates if we only have short samples. Not only is not unfeasible since
risk estimates are required in many situations, but also because it is possible
to make the risk management process more accurate and have more integrity.

There are several steps users can take to increase the likelihood of success.
First, is not to attempt the impossible. If an estimation window of 250
or 500 days is not sufficient to deliver risk estimates with any reasonable
accuracy, don’t try to do so. Second, explicitly quantify the accuracy of the
risk estimate, perhaps by requiring 99% empirical competence bounds. The
standard practice in statistics is to require a formal analysis of statistical
accuracy. Academic journals require this, the authorities and practitioners
generally do not. Having done so, the users could then specify what they
see as the minimum acceptable precision in risk estimation and taylor the
probability and sample size to that. Third, there are ways one take to improve
the estimation, for example by estimating a model at low probability level
and applying a probability shift to obtain a more extreme level. Fourth, the
users should not limit themselves a single methodological approach, instead
implement a range of techniques, including measuring both VaR and ES, and
then across multiple probabilities. Finally, when it comes to choosing risk
measurement methodologies, don’t simply focus on the theoretic properties
of the various methodologies under consideration, also study the empirical
properties, especially at typical sample sizes.

The main negative conclusion relates to financial regulations because there
the inflexibility and long life span of methodologies, coupled with trans-
parency, makes the risk measurement process inaccurate and prone to un-
derreporting. Internally, if allowed to do so by the authorities, financial
institutions can avoid many of these problems. This leaves the question of
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whether given uncertainty of the estimates, the regulatory framework can
actually discourage risk–taking? Our conclusion is a qualified yes, but not
with current methodologies.

This is a concern because while at the moment, market risk regulations only
apply to capital calculations, the authorities have signaled their strong pref-
erence for the same method being used for all internal risk calculations, in-
cluding internal risk management and annual reports. At the same time,
other types of financial institutions are increasingly being required to use
similar methodologies, European insurance companies now calculate risk by
ES and if the current trends towards moving asset managers under a Basel
type regulatory umbrella come to fruition, we could also see asset managers
being required to use the statistical methods discussed above.

A Appendix

A.1 The number of simulations

The simulations are used not only to obtain estimates of the risk measures,
but more importantly the uncertainty of those estimates. This means that
in practice we aim to capture the quantiles of the quantiles. Our somewhat
ad hock criteria for the results is that they are accurate for at least three
significant digits, and as it turns out it requires at least S = 107 simulations.
For the largest sample sizes, we are then generating S×N = 107×2.5×105 =
2.5 × 1012 random numbers, and for each sequence need to find a quantile
and a mean.

Why is such a large simulation necessary? Taking the VaR measure as an ex-
ample, from each sample, we obtain one simulated quantity q̂F/qF −1. Across
S simulated samples, we obtain S such ratios denoted as r1, r2, · · · , rS. They
are regarded as i.i.d. observations from the distribution of q̂F/qF , denoted
as FR. Since we intend to obtain the 99% confidence interval of this ra-
tio, [F−1R (0.005), F−1R (0.995)], we take the [0.005S]-th and [0.995S]-th order
statistics among r1, · · · , rS, rS,[0.0005S] and rS,[0.995S] to be the estimates of
the lower and upper bounds respectively. For the lower bound, following
Theorem 2 in Mosteller (1946), we get that as S → ∞,

√
S

(

rS,[0.0005S]

F−1R (0.005)
− 1

)

d→ N

(

0,
0.0005 · (1− 0.0005)

(

F−1R (0.005)
)2

f 2
R(F

−1
R (0.005))

)

,

where fR is the density function of FR. Following Proposition 1, the distribu-
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tion FR can be approximated by a normal distribution with a given standard
deviation σN . Using this approximated distribution, we can explicitly calcu-
late the asymptotic variance above as

σ2
R =

0.005 · (1− 0.005)

(σNΦ−1(0.005))
2
(

1
σN

φ
(

σNΦ−1(0.005)
σN

))2 = 3.586.

Note that this variance is independent of σN . Therefore this result can be
applied to any estimator that possesses asymptotic normality.

To ensure that the relative error between our simulated lower bound rS,[0.0005S]
and the actual lower bound F−1R (0.005) is less than 0.001 with a confidence
level of 95%, the restriction requires a minimum S such that

S ≥ σ2
R ∗
(

Φ−1(0.975)

0.001

)2

= 1.378× 107.

A minimum of S = 2×107 samples is necessary for our simulation study and
that is the number of simulated samples we use throughout this section.

A.2 proofs

Proof of Proposition 1 and 2.

Under the conditions in the proposition, Theorem 2.4.8 in de Haan and
Ferreira (2006) showed that there exists a proper probability space with
Brownian motions {WN(s)}s≥0 such that as N → ∞,

∣

∣

∣

∣

√
k

(

XN,N−[ks]

U(N/k)
− s−1/α

)

− 1

α
s−

1

α
−1WN (s)−

√
kA(N/k)s−

1

α
s−ρ − 1

ρ

∣

∣

∣

∣

P→ 0

(2)
holds uniformly for all 0 < s ≤ 1. By taking s = 1, Proposition 1 follows
immediately.

To prove Proposition 2, we apply the integral for s ∈ (0, 1] to (2) and obtain
that as N → ∞
√
k

(

êF (1− k/N)

U(N/k)
− 1

1− 1/α

)

−
∫ 1

0

1

α
s−

1

α
−1WN (s)ds−λ

1

(1− ρ)(1− 1/α− ρ)

P→ 0.

Notice that it is necessary to have α > 2 to guarantee the integrability of
∫ 1

0
1
α
s−

1

α
−1WN (s)ds.
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Similarly, from the inequality (2.3.23) in de Haan and Ferreira (2006), we get
that for any ε > 0, with sufficiently large N ,

∣

∣

∣

∣

√
k

(

U(N/ks)

U(N/k)
− s−1/α

)

−
√
kA(N/k)s−

1

α
s−ρ − 1

ρ

∣

∣

∣

∣

≤ ε
√
kA(N/k)s−1/α−ρ−ε,

holds for all 0 < s ≤ 1. With a small ε such that 1/α + ρ + ε < 1, we can
take integral for s ∈ (0, 1] on both sides and obtain that as N → ∞,

√
k

(

eF (1− k/N)

U(N/k)
− 1

1− 1/α

)

→ λ
1

(1− ρ)(1− 1/α− ρ)
.

Therefore, by comparing the asymptotics of êF (1−k/N)
U(N/k)

and eF (1−k/N)
U(N/k)

, we get
that √

k

(

êF (1− k/N)

eF (1− k/N)
− 1

)

d→ α− 1

α2

∫ 1

0

s−
1

α
−1W (s)ds.

The proof is finished by verifying the variance of the limit distribution as
follows.

Var

(

α− 1

α2

∫ 1

0

s−
1

α
−1W (s)ds

)

=
(α− 1)2

α4

∫ 1

0

ds

∫ 1

0

dt
(

s−
1

α
−1t−

1

α
−1min(s, t)

)

=
2(α− 1)2

α4

∫ 1

0

dt

(

t−
1

α
−1
∫ t

0

s−
1

αds

)

=
2(α− 1)

α3

∫ 1

0

t−
2

αdt

=
2(α− 1)

α2(α− 2)
.
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