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Abstract

Financial institutions rely heavily on Value–at–Risk (VaR) as a
risk measure, even though it is not globally subadditive. First, we
theoretically show that the VaR portfolio measure is subadditive in
the relevant tail region if asset returns are multivariate regularly vary-
ing, thus allowing for dependent returns. Second, we note that VaR
estimated from historical simulations may lead to violations of sub-
additivity. This upset of the theoretical VaR subadditivity in the tail
arises because the coarseness of the empirical distribution can affect
the apparent fatness of the tails. Finally, we document a dramatic
reduction in the frequency of subadditivity violations, by using semi–
parametric extreme value techniques for VaR estimation instead of
historical simulations.
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1 Introduction

Risk measurements have become an integral part of the operation of financial
institutions and financial regulations, and most proposals for regulatory re-
form due to the crisis emphasize better understanding of risk. While a large
number of risk measures exist, value–at–risk (VaR) remains the most widely
used risk measure. The reason is that its practical advantages are perceived
to outweigh its theoretical deficiencies. We argue that such a preference is
often theoretically and empirically justified.

VaR has been an integral part in banks’ risk management operations ever
since being mandated by the 1996 amendment to incorporate market risk to
the Basel I Accord, and continuing with Basel II. Over time, its importance
has increased, with financial institutions and non–financials alike, routinely
using VaR in areas such as internal risk management, economic capital and
compensation.

VaR has remained preeminent even though it suffers from the theoretical
deficiency of not being subadditive as demonstrated by Artzner et al. (1999).
In spite of this deficiency, both industry and regulators in the banking sector
have a clear preference for VaR over subadditive risk measures such as ex-
pected shortfall (ES) because of its practical advantages, primarily smaller
data requirements, ease of backtesting and, in some cases ease of calculation.
By contrast, the use of ES is becoming more prevalent in insurance. From
an industry and regulatory perspective it is important to identify whether
such a practically motivated preference is justified.

VaR is known to be subadditive in some special cases such as when asset
returns are normally distributed in the area below the mean, or more gen-
erally for all log–concave distributions, see Ibragimov (2005). This is, how-
ever, not all that relevant since asset return distributions exhibit fat tails,
see e.g. Mandelbrot (1963), Fama (1965) and Jansen and de Vries (1991).
The implications of this for VaR are discussed in Dańıelsson et al. (2005) and
Ibragimov (2005). Using majorization theory, Ibragimov and Walden (2007),
Ibragimov (2009) and Garcia et al. (2007) demonstrate that the VaR mea-
sure is subadditive for the infinite variance stable distributions provided the
mean return is finite, the latter for general Pareto tails; see also the review
in Marshall et al. (2011, ch. 12). Their results extend earlier work of Fama
and Miller (1972, page 270) who discuss the effects of portfolio diversification
when returns follow stable distributions. Dańıelsson et al. (2005), Ibragimov
(2005) and Garcia et al. (2007) also discuss cases of VaR subadditivity for
distributions with Pareto type tails when the variance is finite.
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Most asset returns belong to neither category, normal or the infinite variance
stable, and it is of considerable practical importance to know whether the
industry preference for VaR is reasonable in such cases. Our main motiva-
tion is to investigate the subadditivity of VaR for fat–tailed distributions in
general, and we arrive at three key results.

First, we identify sufficient conditions for VaR to be subadditive in the rele-
vant tail region for fat–tailed and dependent distributions. In this context, fat
tails means that the tails vary regularly, so that they approximately follow a
multivariate power law such as the Pareto distribution. Note that the infinite
variance stable distributions are a subset of this class. Specifically, we prove
that VaR is subadditive in the relevant tail region when asset returns exhibit
multivariate regular variation, for both independent and cross sectionally de-
pendent returns provided the mean is finite. Interestingly, Ibragimov (2005,
2009) shows that this holds for distributions that are in the intersection of
the alpha–symmetric class and the regularly varying class; the multivariate
Student–t distributions are part of this intersection. But the class of distri-
butions with regularly varying tails is much broader than this intersection,
as is the class of alpha–symmetric distributions. We construct an explicit
example of interdependent returns based on the portfolio view of interbank
connectedness as discussed in e.g. Shin (2009). The only exception is asset
returns that are so extremely fat tailed that the first moment — the mean —
becomes infinite, what we label super fat tails, the case discussed by Ibragi-
mov and Walden (2007), Garcia et al. (2007) and Ibragimov (2009). But in
that case, any risk subadditive measure dependent on the existence of the
first moment, such as ES, is not defined.

Second, we investigate these asymptotic results by means of Monte Carlo
simulations, and find that this asymptotic result may not hold in practice
because of small sample sizes and choice of estimation methods. In particular,
estimation of VaR by historical simulation (HS) is prone to deliver violations
of subadditivity in some cases, especially for increasingly extreme losses and
small sample sizes. The reason is what we call the tail coarseness problem.
When only using a handful of observations in the estimation of HS, where
the estimate is equal to one of the most extreme quantiles, the uncertainty
about the location of a specific quantile is considerable, and one could easily
get draws whereby a particular loss quantile of a relatively fat distribution
is lower than the same quantile from a thinner distribution. This could
also induce failures of subadditivity in empirical applications, even though
theoretically subadditivity holds.

Finally, we demonstrate how this estimation problem can be remedied by em-
ploying the extreme value theory (EVT) semi–parametric estimation method
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for VaR, proposed by Dańıelsson and de Vries (2000). Their EVT–based esti-
mator corrects for most empirical subadditivity failures by exploiting a result
from EVT which shows that regardless of the underlying distribution, so long
as the data is fat tailed, the asymptotic tail follows a power law, just like
the Pareto distribution. In effect, this method is based on fitting a power
law through the tail, thus smoothing out the tail estimates and rendering
the estimated VaR much less sensitive to the uncertainty surrounding any
particular quantile. Ultimately this implies that subadditivity violations are
mostly avoided.

The rest of the paper is organized as follows. Section 2 discusses the concept
of sub-additivity. In section 3 we formally define fat tails. Our main the-
oretical results are obtained in section 4 with extensive proofs relegated to
an Appendix. The Monte Carlo experiments are discussed in section 5 along
with the estimator comparisons. Section 6 concludes the paper.

2 Subadditivity

Artzner et al. (1999) propose a classification scheme for risk measures whereby
a risk measure ρ(·) is said to be “coherent” if it satisfies the four requirements
of homogeneity, monotonicity, translation invariance and subadditivity. VaR1

satisfies the first three requirements, but fails subadditivity. Let X1 and X2

denote the random returns to two financial assets. A risk measure ρ(·) is
subadditive if

ρ (X1 +X2) ≤ ρ (X1) + ρ (X2) .

Subadditivity is a desirable property for a risk measure because, consistent
with the diversification principle of modern portfolio theory, a subadditive
measure should generate lower measured risk for a diversified portfolio than
for a non–diversified portfolio.

In response to the lack of subadditivity for the VaR risk measure, several
alternatives have been proposed. The most common of these alternative risk
measures are expected shortfall, ES, proposed by Acerbi et al. (2001) and
worst conditional expectation proposed by Artzner et al. (1999). While these
risk measures are theoretically considered superior to VaR, because they are
subadditive, they have not gained much traction in practice.2 Subadditiv-

1Let X1 be the return, then for the probability p, VaR is the loss level such that
VaR = − sup {x|Pr(X1 ≤ x) ≤ p}.

2See e.g. Yamai and Yoshiba (2002) for more on the practical problems with alternative
risk measures.
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ity of positive homogeneous risk measures guarantees their convexity, which
facilitates the identification of optimal portfolios, see e.g. Pflug (2005); Stoy-
anov et al. (2007). For example, Dańıelsson et al. (2007) show that ES re-
mains very useful in portfolio optimization problems, since it imposes a linear
constraint, while VaR is a non–linear constraint resulting in the optimization
problem being NP complete.

2.1 Statistical Violations of Subadditivity

That VaR can violate subadditivity is easily demonstrated.3 A simple exam-
ple with continuous distributions is:

Example 1 Consider two assets X1 and X2 that are usually normally dis-
tributed, but subject to the occasional independent shocks:

Xi = ǫi+ηi, ǫi ∼ IIDN (0, 1), ηi =







0 with probability 0.991

−10 with probability 0.009
i = 1, 2.

The 1% VaR for X1 is 3.1, which is only slightly higher than the VaR if
the shocks η would not happen, in which case they would be 2.3. Asset X2

follows the same distribution as asset X1, whilst being independent from X1.
Compare a portfolio composed of one X1 and one X2 to a portfolio of 2 X1.
In the former case, the 1% portfolio VaR is 9.8, because for (X1 + X2) the
probability of getting the −10 draw for either X1 or X2 is higher than 1%.

VaR(X1 +X2) = 9.8 > VaR(X1) + VaR(X2) = 3.1 + 3.1 = 6.2.

This example is especially relevant in the area of credit risk where credit
events are represented by the -10 outcome.

Alternatively, we can illustrate subadditivity violations with the following
discrete example. The discrete case is of interest when we turn to the Monte
Carlo study, as data samples are necessarily discrete.

Example 2 Suppose we throw two dice five times and obtain the following
results

3See e.g. Artzner et al. (1999); Acerbi and Tasche (2001); Acerbi et al. (2001).
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Dice 1 Dice 2 Dice 1 + Dice 2

Throw 1 2 4 6
Throw 2 3 1 4
Throw 3 4 5 9
Throw 4 5 6 11
Throw 5 6 6 12

The VaR estimates at probability 1/3 are:

Dice 1 Dice 2 Sum Dice 1 + Dice 2

VaR -3 -4 -7 -6

Note that the VaR at p = 1/3 are the realizations at the second lowest
throw since 1/3 ≤ 2/5, see the definition in Footnote 1. One shows that
theoretically the VaR of rolling two dice is subadditive below the mean. But
in this experiment, the VaR happens not to be subadditive below the mean
as −6 > −7. Recall that definition of VaR in Footnote 1 and the fact that
all outcomes are positive, imply that the VaR is a negative number.

3 Fat–tailed Asset Returns

Empirical studies have long established that the distribution of speculative
asset returns tend to have fatter tails than the normal distribution, see e.g.
Mandelbrot (1963), Fama (1965) and Jansen and de Vries (1991). Fat tailed
distributions are often defined in terms of higher than normal kurtosis. How-
ever, kurtosis captures the mass of the distribution in the center relative to
the tails, which may be thin. Distributions exhibiting high kurtosis but hav-
ing truncated tails, and hence thin tails, are easy to construct.4

An alternative, formal, definition of a fat tailed distribution is that the tails
are regularly varying at infinity, i.e., the tails have a Pareto distribution–like
power expansion at infinity.

Definition 1 A cumulative distribution function F (x) varies regularly at

4The issue of kurtosis is discussed e.g. in the example on page 480 of Campbell et al.
(1997).
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minus infinity with tail index α > 0 if 5

lim
t→∞

F (−tx)

F (−t)
= x−α ∀x > 0 (1)

and at plus infinity if

lim
t→∞

1− F (tx)

1− F (t)
= x−α ∀x > 0.

This implies that a regularly varying distribution has a tail of the form

F (−x) = x−αL(x), x > 0,

where the constant α > 0 is called the tail index and L is a slowly varying
function, e.g. a logarithm.6 An often used particular class of these distribu-
tions has a tail comparable to the Pareto distribution:

F (−x) = Ax−α[1 + o(1)], x > 0, for α > 0, (2)

where the parameter A > 0 is known as the scale coefficient. A regularly
varying density implies regularly varying tails for the distribution as defined
in (1). Under a weak extra condition regarding monotonicity, the converse
also holds, i.e. for large x condition (1) implies

f(−x) ≈ αL(x)x−α−1 x > 0, for α > 0 and A > 0 . (3)

This means that the density declines at a power rate x−α−1 far to the left
of the center of the distribution, which contrasts with the much faster than
exponentially declining tails of the Gaussian. The power is outweighed by
the explosion of xm in the computation of moments of order m > α. Thus,
moments of order m > α are infinite and α therefore determines the number
of finite moments and hence the thickness of the tails. Finiteness of the
moments is determined by α, apart from the boundary case of moment of
order α, in which case the slowly varying function plays a role.7

For example, the Student–t distributions vary regularly at infinity, have de-
grees of freedom equal to the tail index and satisfy the above approximation.

5For an encyclopedic treatment of regular variation, see Bingham et al. (1987) or
Resnick (1987).

6A function L(x) is slowly varying if L(tx)/L(t) → 1 as t → ∞ for any x > 0.
7In the case of a two–sided power law, the sum of the two tails determines finiteness of

the moments (since α could be the same in both cases).
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Likewise, the stationary distribution of the GARCH(1,1) process has regu-
larly varying tails, see de Haan et al. (1989) and Basrak et al. (2002). More-
over, the non–normal stable distributions investigated by Fama and Miller
(1972, page 270), Ibragimov and Walden (2007) and Ibragimov (2009) also
exhibit regularly varying tails at infinity. See also Davis and Mikosch (1998)
and Campbell et al. (1997).

The first moment of most financial assets appears to be finite, indicating a
tail index higher than one, see e.g. Jansen and de Vries (1991), Embrechts
et al. (1996) and Dańıelsson and de Vries (1997, 2000). We demonstrate
below that for all assets with (jointly) regularly varying non–degenerate tails,
subadditivity holds in the tail region provided the tail index is exceeds one.

An example of assets with such a distribution is the return distributions
of non–life insurance portfolios which are characterized by tails with α val-
ues that hover around 1 (which is one explanation for why most insurance
treaties are capped). For example, weather insurance is plagued by occa-
sional bad weather leading heavy damage claims, after many years without
any noticeable storms. But for other applications in finance, a finite mean
(when α > 1) or a finite variance (α > 2), is more common.

4 Subadditivity of VaR in the Tail

While the normal distribution with linear dependence delivers subadditive
VaR below the mean, our interest is in the empirically more relevant fat tailed
distributions. We only need to focus on the lower tail, since the theoretical
results apply equally to the upper tail since one can turn it into the other
tail by multiplying returns with minus one, accomplished e.g. in a short sale.

As before, letX1 andX2 be two asset returns, each having a regularly varying
tail with the same tail index α > 0. We consider the effect of combining the
assets into one portfolio, which requires studying the tail of the convolution
that is determined by the joint tail behavior of the two assets. The cor-
responding formal mathematical definition of jointly regularly varying tails
allows X1 and X2 to be dependent:

Definition 2 A random vector (X1, X2) has regularly varying right tails with
tail index α if there is a function a(t) > 0 that is regularly varying at infinity
with exponent 1/α and a nonzero measure µ on (0,∞)2 \ {0} such that

t P ((X1, X2) ∈ a(t)·) → µ (4)
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as t → ∞ vaguely in (0,∞]2 \ {0} (see e.g. Resnick, 1987).

The measure µ has a scaling property

µ(cA) = c−αµ(A) (5)

for any constant c > 0 and any Borel set A. The non-degeneracy assumption
in Proposition 1 below means that the measure µ is not concentrated on e.g.
a straight line {ax = by} for some a, b ≥ 0.

The following general proposition, which is our main theoretical result, allows
for arbitrary dependence between the returns. If the tail indices of the two
assets are different, a slightly weaker form of subadditivity holds; see the
Appendix.

Proposition 1 Suppose that X1 and X2 are two asset returns with jointly
regularly varying non–degenerate tails with tail index α > 1. Then VaR is
subadditive sufficiently deep in the tail region.

Proof. See the Appendix

Proposition 1 guarantees that at sufficiently low probability levels, the VaR
of a portfolio position is lower than the sum of the VaRs of the individual po-
sitions, if the return distribution exhibits fat tails. For example, this applies
to a multivariate Student–t distribution with degrees of freedom larger than
1. Ibragimov (2009) shows that for models with common shocks and convo-
lutions of finite mean stable distributions subadditivity holds, regardless of
the value of the loss probability. Ibragimov (2005, 2009) also shows that sub-
additivity holds for the class of finite variance alpha–symmetric distributions
with regularly varying tails, such as the multivariate Student–t distribution.

Remark 1 From the proof to Proposition 1 in the Appendix, we see that
even without the non-degeneracy assumptions and, in particular, if the two
assets have different tail indices, we still have

lim sup
p→0

VaRp(X1 +X2)

VaRp(X1) + VaRp(X2)
≤ 1 ,

which is a weaker form of subadditivity in the tails.

The following example is well known.
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Example 3 Suppose X1 and X2 have independent unit scale Pareto loss
distributions, Pr{X1 < −x} = Pr{X2 < −x} = x−α, x ≥ 1. By inversion,
VaRp(X1) = VaRp(X2) = p−1/α. Using Feller’s convolution theorem (Feller,
1971, VIII.8), we have for sufficiently low p:

p = Pr{X1 +X2 ≤ −VaRp(X1 +X2)} ≈ 2[VaRp(X1 +X2)]
−α.

Hence, if α > 1 then for low p:

VaRp(X1 +X2)− [VaRp(X1) + VaRp(X2)] ≈ p−1/α
(

2
1
α − 2

)

< 0.

A caveat is that diversification may not work for super fat tails, i.e. if α <
1. Data falling into this category are characterized by a large number of
very small outcomes inter–dispersed with very large outcomes. This result
was noted by Fama and Miller (1972). Ibragimov and Walden (2007) and
Ibragimov (2009) extend these results to the VaR risk measure for the class
of sum stable distributions and possibly dependent processes. These issues
are further discussed by Embrechts et al. (2008).

4.1 Affine Dependent Returns

Proposition 1 establishes that subadditivity is not violated for fat tailed data,
deep in the tail area, regardless of its dependency structure. We can illus-
trate this result by an example of assets with linear dependence, via a factor
structure. Other relevant cases are discussed in de Vries (2005) for the finan-
cial assets and Geluk and de Vries (2006) for insurance. Garcia et al. (2007)
considered the case of two independent returns.

Consider the standard single factor model, where X1 and X2 are two assets,
which are dependent via a common market factor:

Xi = βi R + εi, i = 1, 2 (6)

where R denotes the risky return of the market portfolio, βi the constant
market factor loading and εi the idiosyncratic risk of asset Xi. The random
variable εi and R are independent of each other; and individual εis are inde-
pendent of each other. Thus, the only source of cross–sectional dependence
between X1 and X2 is the common market risk.

Since R and εi are independent, we can use Feller (1971)’s convolution theo-
rem to approximate the tails of X1 and X2, depending upon the tail behavior
of R, ε1 and ε2. We can further use it to approximate the tail of X1 + X2.
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To illustrate this, we present below one particular case, viz., the case where
R, ε1 and ε2 have regularly varying Pareto-like tails with the same tail index
α, but with different scale coefficients A, see (2).8

Corollary 1 Suppose that asset returns X1 and X2 can be modelled by the
single index market model, where R, ε1 and ε2 all have Pareto–like tails
with tail index α > 1, and scale coefficients Ar > 0, A1 > 0 and A2 > 0
respectively, as in (2). Then the VaR measure is subadditive in the tail region.

Proof. See the Appendix.

In general, the single index market model (6) may not describe the true
nature of the dependence between X1 and X2 since εi’s may not be cross
sectionally independent, even when each of them is independent from the
common market factor R. For example, apart from the market risk, the
assets X1 and X2 may be dependent on industry specific risk, depicted by the
movement of an industry index I. Moreover, typically the number of factors
is larger. Such industry specific factors may lead to dependence between ε1
and ε2. We may model cross sectional dependence by generalizing model (6)
by incorporating a sector specific factor I.

Xi = βi R + τi I + εi, i = 1, 2 (7)

where I is the risky industry specific factor and the constant τi represents the
effect of the industry specific risk on the asset Xi. If Xi has Pareto–like tails
with scale coefficient A and tail index α, then again under the assumption
of Proposition 1 for sufficiently small p:

VaRp(X1 +X2) ≤ VaRp(X1) + VaRp(X2).

To show the full scope of Proposition 1, we now consider a case where there
is zero correlation, but where portfolios may nevertheless be dependent.

Example 4 Consider two independent random returns X1 and X2, and the
following two portfolios X1+X2 and X1−X2. Assume alternatively that the
returns are standard normally distributed, or Student-t with α > 2 degrees
of freedom. It is immediate that E[(X1 +X2) (X1 −X2)] = 0, and hence the
correlation is zero. So under normality the two portfolios are independent.

8The result in the following Corollary is e.g. shown in the first version of this paper,
Dańıelsson et al. (2005). Ibragimov (2005, 2009) and Ibragimov and Walden (2007) con-
sidered the case βi = 1 and when R and ǫi are part of the alpha–symmetric distributions.
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In the case of the Student–t, however, the two portfolios are dependent in the
tail area since the extremes line up along the two diagonals.

The implication for the VaR of the portfolio is as follows. For the normal
case, below the mean the VaR is known to be subadditive. For the non-
linear dependent case with the Student-t risk drivers, one can calculate the
VaR sufficiently deep into the tail area by using Feller’s convolution theorem.
Since for large s

p = Pr (X1 +X2 > s) = Pr (X1 −X2 > s)

≃ 2s−α,

upon inversion, the univariate VaR’s are s ≃ (2/p)1/α.

The VaR of the combination of the portfolios is obtained from

p = Pr (X1 +X2 +X1 −X2 > s) = Pr (2X1 > s) ≃ 2αs−α

upon inversion s ≃ 2 (1/p)1/α. It follows immediately that this VaR is smaller

than the sum of the individual VaRs 2 (2/p)1/α.

In a stylized way, the first portfolio could be interpreted as belonging to a bank
that is lending long in two sectors, while the other portfolio might be from a
hedge fund, short one sector, long the other.

5 Monte Carlo Study and Empirical Results

The theoretical subadditivity property established in Proposition 1 only holds
in the tail region, and conceivably might only hold for more extreme proba-
bilities than those encountered in practical applications, or in very large data
sets.

To investigate this issue, we conducted Monte Carlo experiments with two
asset returns X1 and X2, assumed to follow a Student–t distribution with ν
degrees of freedom; recall that the tail index α = ν for the t distribution.
We consider several different values for ν, i.e. 1, 2, 3, 4.

We constructed linearly dependent random variables X1 and X2 by taking
linear combinations of two independent Student–t variates using the Choleski
decomposition of the correlation matrix, i.e. X2 = ρX1+

√

(1− ρ2)X̃2 where

X̃2 is independent from X1.
9 The data are bivariate regularly varying by

9In a strict sense, the terminology of covariance matrix is not appropriate for the case
of α ≤ 2, since then the second moment does not exist. However, one can still create linear
combinations and dependency as we do here.
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construction. But the linear combination of Student–t variates behind the
dependent X1 and X2 implies that the data are not bivariate Student–t, as
the convolution of two Student variates preserves the fat tail property, but
does not conform to the multivariate Student–t distribution.

We chose the sample sizes, N , to represent both very large samples, expected
to give asymptotic results, as well as a smaller samples representing typical
applications. The largest sample size is set to 100,000 while the smaller
sample sizes are 1000 and 300. In each case, we simulate two asset returns
and form an equally–weighted portfolio of the returns to estimate the VaR.

The probability levels, p, are chosen to capture those typically used in prac-
tice, i.e., 5% and 1%, as well as some much smaller probability levels for the
larger samples to explore the asymptotic properties. These lower probability
levels are representative for levels that are used in stress tests and worst case
analysis. In the tables the probability levels are indicated by p.

5.1 VaR Subadditivity Violations

Comparing Tables 1 through 3 for probability levels of 1% and 5%, we observe
that the frequency of VaR subadditivity violations decreases in the sample
size when ν > 1.

Subadditivity fails most frequently when ν = 1, and less so when the de-
grees of freedom increase. Our simulation results for ν = 1 are in line with
Fama and Miller (1972), Ibragimov and Walden (2007) and Ibragimov (2009).
When ν = 1, we are at the border between the situation where diversifica-
tion is counterproductive and productive, since when ν < 1, diversification
increases risk.

Reading across the rows in the Tables, VaR subadditivity violations decrease
as the probability levels are increased if ν > 1. In some cases the magni-
tudes of the VaR subadditivity violations is nevertheless substantial. Figure
1 shows the histogram of the magnitudes, for ν = 2, N = 300, 100,000
simulations and p = 1%.

At first glance, these results may run counter to Proposition 1. The expla-
nation for this is the finite sample properties of the data, as explained by the
following experiment. Let ν = 3 with independent variables and N = 300.
We record the number of violations at all probability levels 2/N , 3/N , 4/N ,
until 1/2. The results are shown in Figure 2. Note the J–shaped pattern.10

10For the normal distribution one observes the same J–shape at a lower scale; the ex-
planation of this phenomenon is analogous to the case of the Student–t.
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The Student–t distribution is subadditive below the mean in the case of in-
dependent returns. Thus, at p = 0.5, we expect a violation in 50% of the
cases, since at that point we expect the VaR for either X1 or X2 to have
switched sign. Moving to the left, away from the mean into the tail region,
thus lowers the number of violations, as seen in Figure 2.

Deep into the tail area, however, at p = 0.1, the number of violations starts to
increase again, since estimation of VaR by historical simulation (HS) is prone
to deliver violations of subadditivity in some cases, especially for increasingly
extreme losses and small sample sizes. The reason is that as p decreases, the
VaR is estimated by a quantile increasingly close to the minimum, where
the empirical distribution becomes very coarse in comparison to the true
distribution so far out in the tail.

In other words, the tail is sampled imprecisely in this area because of what
we call the tail coarseness problem. When only using a handful of obser-
vations in the estimation of HS, i.e. where the estimate is equal to one of
the most extreme quantiles, the uncertainty about the location of a specific
quantile is considerable. This implies that one could easily obtain draws
whereby a particular quantile of a relativity fat distribution is less extreme
than the same quantile from a thinner distribution. This can imply an upset
of subadditivity. See Example 2 above for a demonstration of this result.

Figures 3 and 4 further illustrate this, with the latter showing the 99% quan-
tiles of HS estimation of VaR as we vary the threshold from 2 to 20 in a
sample of size 1000.

5.2 VaR from Estimating the Tail

In this section we offer a remedy for the tail coarseness problem identified
above, suggesting an alternative estimator for the VaR. We propose to use
the quantile estimator of Dańıelsson and de Vries (2000) which is based on
extreme value theory (EVT).

For fat–failed distributions, the tail asymptotically follows a power law, i.e.
the Pareto distribution,

F (x) = 1− Ax−α

Given a sample of size n and m < n sufficiently small, one can estimate α
by the Hill estimator

1

α̂(m)
=

1

m

m
∑

i=1

log
X(i)

X(m+1)

(8)
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where X(i) indicates order statistics. The quasi maximum likelihood VaR
estimator is

VaR(p) = X(m+1)

(

m/n

p

)
̂1/α(m)

. (9)

The two estimators, 8 and 9, are asymptotically normally distributed, see de
Haan and Ferreira (ch. 2, 2006).

Effectively, EVT estimation is based on fitting a smooth function (Pareto)
to the tails. Because this function is estimated by using all observations in
the tail, the estimates are less sensitive to the tail coarseness problem. This
power law behavior can be reliably estimated by using more data than just
the most extreme observations.11 Subsequently, one joins the parametrically
estimated tail to the empirical distribution in the region where there are
sufficient observations. Refer to Figure 3 for how EVT provides an estimate
of a smooth tail.

We compare the number of VaR subadditivity violations obtained by using
HS with the EVT method for N = 1, 000 and N = 10, 000 in Tables 4 and
5. We vary the probability levels as in the previous tables, but focus on the
ν = 2 case. Finally, we use several thresholds for the EVT estimation, i.e.
m from (8). Note that the number of subadditivity violations for the HS
from Table 4 are comparable to the results from Table 2 (for example there
are 12,897 violations with ρ = 0.5 and p = 0.003 in Table 4, while with a
hundred times as many simulations in Table 2 there are 1,294,552 violations.

EVT reduces the number of violations considerably. For example, for N =
1, 000, p = 0.01, and m = 100, HS has 926 subadditivity violations, out of
100,000 simulations, whilst EVT has only 4. Similar results obtain in other
cases. In the worst case we get about 30% reduction in violations, and in the
best cases 100%. This is further supported in Figure 3 which presents the
empirical upper tail and the EVT estimated tail, and Figure 4 which shows
the empirical 99% confidence bounds for the VaR estimates from HS and
EVT. The EVT bounds are much tighter than the HS bounds.

5.3 Empirical Study

We finally investigate the frequency of subadditivity violations for the stock
returns making up the S&P–500 index. If we could use all 500 stocks we
would get 124,750 pairs of stock returns for the analysis. The sample size

11In fact, for any sequence m/n → 0,m → ∞, this approach is better than relying on
the empirical distribution. The latter approach only guarantees asymptotic normality if
m/n → c ≥ 0, see de Haan and Ferreira (ch. 3 and 4, 2006).
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is 5,000, and since not all stocks in the S&P–500 have 5,000 observations
(about 20 years), some had to be removed from the sample. Furthermore,
we eliminated from the sample all stock pairs where not all the dates did
match. This results in 49,141 stock pairs.

The results are reported in Table 6. We apply both the HS and EVTmethods,
use two EVT thresholds, 50 and 125 (1% and 2.5%), and employ a range of
probabilities for VaR. The average correlation across all the stock pairs is
20.6%, and the average tail index for the smaller threshold is 3.27, whilst it
is 2.77 for the larger threshold.

We do not find any subadditivity violations for non-extreme VaR probabili-
ties (1%) but as we move into the tail, the frequency of violations increases.
HS is much more likely to violate subadditivity than EVT, consistent with
the Monte Carlo simulations, but still a few violations are found for EVT.

We also report the average tail index and correlations in cases where we
observe subadditivity violations. The correlations are much higher than for
the entire sample (the lowest, 30.4%, for HS where p = 0.1% and highest
for EVT where p = 0.1% compared to 20.6% for all stock pairs) and the
average tail indices are always lower than for the full sample. The number
of violations, given the number of observations, is in line with the numbers
found in the simulations, e.g. those reported in Table 5.

6 Conclusion

We first show that VaR is subadditive in the relevant tail region when asset
returns are multivariate regularly varying, and possibly dependent. Second,
Monte Carlo simulations show that coarseness of the empirical distribution
can upset the subadditivity of VaR in practice. The final contribution of
the paper is that the use of semi–parametric extreme value techniques, dra-
matically reduces the frequency of subadditivity failures in practice. This
approach exploits the fact that the tail of the distribution eventually be-
comes smooth and can only take on a specific parametric form.
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Appendix

Proposition 1 deals with left tails, but for notational simplicity the argument
below treats right tails.

Proof of Proposition 1. For p > 0 small,

VaRp(X1) ∼
(

µ
{

(1,∞)× (0,∞)
})1/α

a

(

1

p

)

,

VaRp(X2) ∼
(

µ
{

(0,∞)× (1,∞)
})1/α

a

(

1

p

)

and

VaRp(X1 +X2) ∼
(

µ
{

x ≥ 0, y ≥ 0 : x+ y > 1
})1/α

a

(

1

p

)

as p → 0.

The scaling property (5) means that there is a finite measure η on B1 = {x ≥
0, y ≥ 0 : x+ y = 1} such that

µ(A) =

∫

B1

∫

∞

0

1((u, v)r ∈ A)αr−(1+α) dr η(du, dv) . (10)

Then

µ
{

(1,∞)× (0,∞)
}

=

∫

B1

uα η(du, dv) ,

µ
{

(0,∞)× (1,∞)
}

=

∫

B1

vα η(du, dv) ,

and

µ
{

x ≥ 0, y ≥ 0 : x+ y > 1
}

=

∫

B1

(u+ v)α η(du, dv) .

Since by the triangular inequality in Lα(η)

(
∫

B1

(u+ v)α η(du, dv)

)1/α

<

(
∫

B1

(u)α η(du, dv)

)1/α

+

(
∫

B1

(v)α η(du, dv)

)1/α

,

with the strict inequality under the non-degeneracy assumption, we conclude
that

VaRp(X1 +X2)− VaRp(X1)− VaRp(X2) < 0
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holds for all p > 0 small enough.

Proof of Corollary 1. Results follow from the previous proof in the
general case. But we also provide a constructive proof here.

Suppose that R has a regularly varying tail with index α and εi, i = 1, 2
has a regularly varying tail with index α. Further, suppose that R has a
symmetric distribution. Thus, to a first order approximation,

Pr{R ≤ −x} ≈ Ar x−α,Pr{R ≥ x} ≈ Ar x−α.

If βi > 0 then

Pr{βiR ≤ −x} = Pr

{

R ≤ −
x

βi

}

≈ Arβ
α
i x

−α

If βi < 0 then

Pr{βiR ≤ −x} = Pr{−|βi|R ≤ −x} = Pr{|βi|R ≥ x} ≈ Ar|βi|
α x−α.

Thus
Pr{βiR ≤ −x} ≈ Ar|βi|

α x−α, βi ∈ R

For the individual assets ε1 and ε2

Pr{εi ≤ −x} ≈ Ai x
−α, i = 1, 2

By Feller’s convolution theorem

Pr{Xi ≤ −x} ≈ |βi|
αAr x−α + Aix

−α.

Thus
p ≈ x−α (Ai + |βi|

αAr) ,

and upon inversion

x ≈ p−
1
α (Ai + |βi|

αAr)
1
α .

Similarly

Pr{X1 +X2 ≤ −x} ≈ |β1 + β2|
αAr x

−α + A1x
−α + A2x

−α

Thus,

V aRp(X1) ≈ p−
1
α (A1 + |β1|

αAr)
1
α ,

V aRp(X2) ≈ p−
1
α (A2 + |β2|

αAr)
1
α ,
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and
V aRp(X1 +X2) ≈ p−

1
α

[

(A1 + A2 + |β1 + β2|
αAr)

1
α

]

.

To establish the sub-additivity we proceed as follows:

V aRp(X1 +X2) ≈ p−
1
α

[

(A1 + A2 + |β1 + β2|
αAr)

1
α

]

≤ p−
1
α [Ar (|β1|+ |β2|)

α + (A1 + A2)]
1
α

= p−
1
α

[

Ar (|β1|+ |β2|)
α +

(

(A1 + A2)
1
α

)α] 1
α

≤ p−
1
α

[

Ar (|β1|+ |β2|)
α +

(

A
1
α
1 + A

1
α
2

)α] 1
α

= p−
1
α

[(

A
1
α
r |β1|+ A

1
α
r |β2|

)α

+
(

A
1
α
1 + A

1
α
2

)α] 1
α

≤ p−
1
α

[

((

A
1
α
r |β1|

)α

+
(

A
1
α
1

)α) 1
α

+
((

A
1
α
r |β2|

)α

+
(

A
1
α
2

)α) 1
α

]

,

= p−
1
α (Ar|β1|

α + A1)
1
α + p

1
α (Ar|β2|

α + A2)
1
α

= V aRp(X1) + V aRp(X2).

Where in the second step we use the triangular inequality and in the fourth
step the Cα inequality for α > 1. The sixth step relies on Minkowski’s
inequality for α > 1. Thus, for α > 1, VaR is sub-additive in the tail region.
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7 Tables and Graphs

Table 1: Number of subadditivity violations from a Student–t with HS esti-
mation of VaR. N=300. Number of simulations is 10,000,000

The columns are degrees of freedom of the Student–t, ν, the correlation coefficient ρ and

the number of VaR subadditivity violations corresponding to various probability levels p

(1% to 5%).

VaR probabilities p

ν ρ 0.01 0.02 0.05

1 0.0 2, 873, 140 3, 724, 601 4, 265, 379
1 0.5 3, 067, 383 3, 978, 156 4, 442, 592

2 0.0 594, 762 346, 238 104, 406
2 0.5 1, 426, 493 1, 366, 805 974, 471

3 0.0 147, 372 40, 576 4, 131
3 0.5 783, 880 598, 916 323, 415

4 0.0 50, 053 8, 499 413
4 0.5 533, 671 354, 449 162, 767

20



Table 2: Number of subadditivity violations from a Student–t with HS esti-
mation of VaR. N=1,000 Number of simulations is 10,000,000

The columns are degrees of freedom of the Student–t, ν, the correlation coefficient ρ and

the number of VaR subadditivity violations corresponding to various probability levels p.

VaR probabilities p

ν ρ 0.003 0.005 0.01 0.05

1 0.0 2, 860, 556 3, 541, 288 4, 048, 271 4, 610, 815
1 0.5 3, 044, 504 3, 798, 688 4, 278, 082 4707254

2 0.0 530, 151 325, 367 91, 850 246
2 0.5 1, 294, 552 1, 241, 907 842, 265 131, 120

3 0.0 100, 874 27, 688 1, 599 0
3 0.5 594, 967 439, 985 181, 330 5, 926

4 0.0 24, 332 3, 427 60 0
4 0.5 337, 345 206, 357 59, 990 753

Table 3: Number of subadditivity violations from a Student–t with HS esti-
mation of VaR. N=10,000, Number of simulations is 10,000,000

The columns are degrees of freedom of the Student–t, ν, the correlation coefficient ρ and

the number of VaR subadditivity violations corresponding to various probability levels p .

VaR probabilities p

ν ρ 0.0003 0.0005 0.001 0.01 0.05

1 0.0 2, 857, 166 3, 538, 949 4, 049, 058 4, 717, 315 4, 877, 893
1 0.5 3, 036, 434 3, 793, 203 4, 275, 794 4, 793, 464 4, 909, 396

2 0.0 499, 603 284, 187 60, 018 0 0
2 0.5 1, 214, 032 1, 144, 662 698, 389 453 0

3 0.0 76, 748 15, 161 284 0 0
3 0.5 457, 543 302, 667 80, 975 0 0

4 0.0 12, 970 908 3 0 0
4 0.5 190, 711 91, 285 11, 205 0 0
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Table 4: Number of subadditivity violations for a simulation from a Student–
t(2) with EVT and HS estimation. N=1000. Number of simulations is
100,000

The first two columns are the EVT threshold m (i.e. number of observations in the tail to

estimate tail index) and the VaR probability p. The last four columns record the number

of the violations for both EVT and HS where the data was generated with two correlation

coefficients, ρ = 0 and ρ = 0.5.

Violations

ρ = 0 ρ = 0.5

m p EVT HS EVT HS

200 0.01 32 926 3,692 8,398
100 0.01 4 926 1,125 8,398
50 0.01 0 926 583 8,398

200 0.003 414 5,316 8,559 12,897
100 0.003 147 5,316 5,722 12,897
50 0.003 262 5,316 6,007 12,897
10 0.003 1,071 5,316 8,059 12,897
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Table 5: Number of subadditivity violations for a simulation from a Student–
t(2) with EVT and HS estimation. N=10,000. Number of simulations is
100,000

The first two columns are the EVT threshold m (i.e. number of observations in the tail to

estimate tail index) and the VaR probability p. The last four columns record the number

of the violations for both EVT and HS where the data was generated with two correlation

coefficients, ρ = 0 and ρ = 0.5.

Violations

ρ = 0 ρ = 0.5

m p EVT HS EVT HS

1000 0.01 0 0 0 6
500 0.01 0 0 0 6
200 0.01 0 0 0 6

1000 0.001 0 541 6 7,002
500 0.001 0 541 15 7,002
200 0.001 0 541 127 7,002
100 0.001 0 541 213 7,002
50 0.001 0 541 242 7,002

1000 0.0003 0 4,978 46 12,087
500 0.0003 0 4,978 179 12,087
200 0.0003 2 4,978 1,338 12,087
100 0.0003 27 4,978 3,246 12,087
50 0.0003 151 4,978 5,068 12,087
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Table 6: Number of subadditivity violations for S&P–500 stocks
Daily returns from April 31, 1991 to March 31, 2011, n = 5, 000. VaR only estimated for

stock pairs where 5,000 observations were available and all dates for both stocks corre-

spond. This results in 49,141 pairs of stocks. The average tail index for the the smaller

and higher threshold are ᾱ(50) = 3.27 and ᾱ(125) = 2.77, respectively, while the average

correlation is ρ̄ = 20.6%. The first two columns are the EVT threshold indicated by m

(i.e. number of observations in the tail to estimate tail index) and the VaR probability at

p. This is followed by two pairs of three columns, first pair for EVT, the second for HS.

Within each pair the first column is the number of subadditivity violations, the second

(ᾱ) is the average tail index and the the last (ρ̄) the average correlations, for the subset

in which subadditivity is violated. Note that the HS results are necessarily the same for

the two cases of m.

EVT HS

m p violations ᾱ ρ̄ violations ρ̄

50 1.0% 0 0
50 0.5% 0 12 57.3%
50 0.1% 89 2.41 46.8% 410 30.4%

125 2.0% 0 0
125 1.0% 0 0
125 0.5% 0 12 57.3%
125 0.1% 59 2.14 50.0% 410 30.4%
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Figure 1: Magnitude of VaR violations

Student–t(2), N = 300, 100,000 simulatios, p = 1%
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Figure 2: Number of VaR subadditivity violations for a Student–t(3). N=300
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Figure 3: Empirical tail of Student–t(3). N=1000, and EVT fit.
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Figure 4: 1% and 99% empirical confidence bounds for VaR

VaR for a Student–t(3), estimated with HS and EVT for sample size N = 5000, and

probabilities, m = 2/N, . . . , 10/N . The EVT threshold, m, is 200. The solid line is

the true quantile, and the dotted/dashed lines are 1% and 99% empirical quantile from

repeating the estimation with 5,000 random samples.
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