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Abstract

Extreme value theory has been applied to many areas of economics where
the data is heavy tailed, e.g. in the analysis of market structure and risk
forecasting. Accurate inference has, however, been hindered by the lack of
consistent procedures for determining the start of the tail. A double subsam-
ple bootstrap procedure is proposed to solve this problem. The accuracy of
the procedure is accessed with Monte Carlo experiments. Subsequently it is
applied to Gibrat’s and Zipf’s laws, as well as the estimation of financial risk.
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1 Introduction

Economic analysis is often dependent on the accurate estimation of the tails of
distributions, in applications such as market structure and risk analysis. While
the probability theory of extremes (extreme value theory, EVT) is well developed,
the determination of the threshold where the tails begin remains a fundamental
statistical problem. This is important because most analysis of extremes depends
on using the highest or lowest observations to estimate the distribution of the
tail area. Estimates of tail shapes are in general biased and inefficient unless the
threshold is accurately determined. The reason is that the linear relationship be-
tween log size and log rank, which most estimators depend on, typically only holds
asymptotically. As a result, finding the tail threshold is a nontrivial undertaking.
Our main objective is the development of a procedure for optimally estimating
the tail threshold. We subsequently apply our method to a range of problems in
market structure and risk analysis.

Extreme value theory (EVT) is the study of the probability theory governing tail
shapes of distributions for extreme observations. The limit law for the extreme
order statistics is one of three types which are determined by whether the dis-
tribution has a finite endpoint or not, and by whether the tails of the densities
fall exponentially fast or by a power. When the tails decline exponentially, all
moments are bounded, and the distribution is said to be thin tailed. If however,
the tails decline by a power, not all moments are defined, and the distribution is
said to be heavy tailed. Typically for the applications considered here, the tails
are heavy, and the discussion below focuses on that case.

A long–standing issue in economics concerns the relation between size and rank.
The earliest published examples date back to Pareto’s (1898) work on income
distributions. Current examples are Chung and Cox (1994) who analyze the income
distribution of superstars with Pareto (1896) laws, Sutton (1997) who employs
Gibrat’s (1931) law to consider the size distribution of the largest firms, e.g. to
predict mergers, and Gabaix (1999) who uses the law of Zipf (1949) to analyze the
population sizes of large US metropolitan areas. The common theme in all these
applications is the assumption that the the largest observations of the quantity of
interest, be it city size, market capitalization, or income distribution adheres to the
hyperbolic Pareto distribution. This implies that the log size–log rank relationship
will be linear. If, however, the Pareto distribution only holds asymptotically in
the tails, the relationship between log size and log rank will be nonlinear except
in the extreme tails. As a result, parameter estimates are sensitive to the number
of observations in the tail, a point noted by e.g. Mansfield (1962) and Ijiri and
Simon (1977).

Similarly, financial risk analysis is dependent on accurate forecasts of the proba-
bility of tail events. This problem has been addressed with a variety of methods.
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However, if one needs to forecast very low probability events, extreme value the-
ory (EVT) has to be used. EVT has seen widespread applications in risk analysis
and especially stress testing in both insurance (see e.g. Embrechts et al., 1997,
ch. 2), and finance (see e.g. Jansen and de Vries, 1991; Dańıelsson and de Vries,
1997; Quintos et al., 2001; Longin, 2001; Chernozhukov and Umantsev, 2001). In
these applications, a key question concerns the determination of the tails to ensure
robustness of the estimated tail of the distribution.

Extreme value theory has also found useful applications in econometrics, e.g. in
non–nested testing (e.g. Akgiray et al., 1988; Koedijk et al., 1990), and conver-
gence rates of regression estimators (e.g. Loretan and Phillips, 1994). In these
applications the determination of the tail threshold is also critically important.
Furthermore, a related problem appears in optimal bandwidth selection, and sim-
ilar methods as those proposed below have been applied to that problem, (see e.g.
Henry and Robinson, 1999).

A key feature of EVT is that the distribution of the tails is only estimated with
observations from the tail area. This implies accurate inference since parameter
estimates are not affected by assumptions about what happens in the center of
the distribution. In EVT, the rate of decline of the tails is determined by the
tail index, α. The tail index is estimated by using the most extreme observations
above a threshold sn, where n is the sample size. The most common estimator
of the tail index is the Hill estimator, which is generally considered to have more
desirable properties than other estimators, see e.g. Hall and Welsh (1984). The
efficient determination of the tail threshold, sn, requires an optimal assessment of
the trade–off between bias and variance.

In special cases, i.e., when relationship of the log rank to log size is linear, the Hill
estimator is unbiased, and one simply uses all available data. This corresponds
with the case where the data is exactly Pareto distributed. In general however,
the log rank to log size relationship is nonlinear. This corresponds with the Pareto
distribution only being a first order approximation to the true distribution far
away from the center. In this case, the determination of the optimal threshold
necessitates considering higher order approximations of the true distribution.

Unfortunately, finding the first order parameters and the tail threshold sn when
second order factors cause bias is not a trivial exercise. A key objective of this
paper is the estimation of sn which determines the location where the first order
Pareto parameter approximation of the cumulative distribution function is appro-
priate. We first estimate the relevant parameters of the generalized Pareto, and
subsequently calculate the tail threshold.

Our estimator of sn is based on first bootstrapping the mean squared error (MSE)
of 1/α̂, and the exponent of the Pareto distribution function and subsequently
minimizing the MSE with respect to sn. Unfortunately, since α is unknown, one
does not have a theoretical benchmark for the calculation of the MSE. As a replace-
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ment for the true α, we propose using an alternative estimator which converges in
the MSE sense at the same rate, but with a different constant. Hence, this differ-
ence statistic converges at the same rate and has a known theoretical benchmark
which equals zero in the limit. The idea for extracting the optimal sequence sn,
i.e. finding the best MSE sequence, is similar to the use of control variates to
improve efficiency in Monte Carlo simulations. We therefore obtain an estimate
of MSE(1/α̂), which can be minimized with respect to the choice of the threshold
sn. A full sample bootstrap of MSE(1/α̂), only generates sn levels which converge
in distribution. The weak law of large numbers does not operate on averages of
the most extreme order statistics. To attain convergence in probability, we show
that one needs to create resamples of smaller size than the original sample with
a subsample bootstrap technique. By bootstrapping on the entire sample, one
in essence recreates the full sample estimates, where the use of smaller resamples
induces a weak law of large numbers effect. In some resamples of reduced sample
sizes, intermediate order statistics become extreme observations, enabling the law
of large numbers to take effect.

We first introduce power laws in Section 2, and then present the theoretical sta-
tistical analysis in Section 3, and a method for tail forecasting in Section 4. The
empirical properties of our estimator are accessed in Section 5 by simulating from
a number of heavy tailed distributions and stochastic processes where we are able
to compare the Monte Carlo results with known analytic solutions. We then apply
our technique in Section 6 to ranks–size relationships and estimate the risk in some
financial return data sets. All proofs are contained in the Appendix.

2 Power Laws

Suppose we consider applications in market structure, such as the size ranking of
corporations, personal wealth, or the population sizes of the world’s largest cities.
Alternatively, consider the estimation of the probability of large losses in financial
markets.

The unifying element in each of these applications is that they depend on the
accurate estimation of rank–order relationships. Furthermore, since in each case
the tails of the underlying data is fat, extreme value theory is ideally suited the
analysis of the largest outcomes. Unfortunately, the usual assumption of the log
rank–order relationship being linear only holds asymptotically. Therefore, common
estimators such as the least squares and Hill estimators discussed below are biased.
The main contribution of this paper is the development of estimators for optimally
estimating the tail shape of the rank–order distribution.
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2.1 Unconditional Models: Pareto and Zipf

The earliest example of a formal analysis of rank–order relationships, and especially
extreme realizations is by Pareto (1896) who considers income distributions. His
approach is to use a static model, where he proposes a continuous distribution,
now known as the Pareto distribution. Suppose that x is a random variable, then
the Pareto distribution takes the form:

F (x) = 1 − ax−α.

Since, at the time, only the wealthiest individuals paid income tax, this is only
a model of the upper tail and the highest incomes. The Pareto distribution has
seen widespread applications in the analysis of incomes and other areas, e.g. by
Champernowne (1953) and more recently by Chung and Cox (1994).

A discrete form of the Pareto distribution was proposed by Zipf (1949) who is
concerned with the size of cities. For a city of population size x, the probability it
is larger than some population size X is given by:

Pr[x > X] = 1 − aX−α. (1)

In this model, α can be estimated by the regression:

log(y) = µ + α log(x). (2)

where x is size, and y rank.

In both the Pareto distribution and Zipf’s law, the key coefficient is α, which
determines the rate of decline of the tails. In the field of extreme value theory, α
is known as the tail index.

2.2 Conditional Models: Gibrat

In an attempt to explain rank–order relationships, primarily in firm size, Gibrat (1931)
proposes a stochastic growth model which now is called Gibrat’s law. Suppose xt

is the size of a firm x at a given time, where size may be any measure of firm
size, e.g. revenue or market capitalization. The evolution of x over time is then
governed by:

Xt = c + δtXt−1, (3)

where δt is a random growth factor, and c is a constant. In general, δt is not condi-
tional on firm size, but may be dependent on other economic variables, including
the size of competing firms. As a result, the rank order relationship among a group
of competing firms is conditional on their relative sizes. While these stochastic
growth models do not incorporate any economic optimization, subsequent litera-
ture has proposed optimizing models of market structure, see Sutton (1997) for a
survey.
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Several authors have noted that the implied distribution of random variables gen-
erated by an equation like (3) is the Pareto distribution. Champernowne (1953)
obtains this result for a specific case, while Ijiri and Simon (1977) exploit this fur-
ther, and Gabaix (1999) relates Gibrat’s Law to Zipf’s law. Kesten (1973) demon-
strates in full generality, under which conditions the stochastic growth model (4)
has a stationary distribution with Pareto tails as a solution. He does this by show-
ing that that power law declines, as in the Pareto’s distribution, stem from the
stochastic nature of the coefficients in a linear difference stochastic equation, now
known as the Kesten equation:

Xt = εt + γtXt−1, εt, γt ≥ 0, (4)

where {γt, εt} are IID, and ∃κ > 0 such that E[γκ
t ] = 1. Then Xt

D→X∞ and ∃c > 0
such that as s → ∞ the Pr[X∞ > s] ∼ cs−κ.1

There are two common and important assumptions embedded in the Gibrat–Zipf
models: First, the constancy of α. This is a common assumption in the economic
growth literature, and has been applied to city sizes by e.g. Glaeser et al. (1995).
The second assumption, i.e. that α equals one, is less obvious. Ijiri and Simon
(1977) argue that this is natural in special cases, and Gabaix (1999) argues that
under some conditions this follows naturally from Gibrat’s law in the limit.

An important side effect of α equaling one, is that it implies that all moments of
the underlying distribution are undefined. Only moments lower than α are defined.
Hence research assuming that α = 1 necessarily cannot use the mean and variance
in its analysis.

2.3 Extreme Value Theory

Consider a set of random variables, X1, . . . , Xn, where we are only interested in
the largest outcomes. In a fundamental result, reminiscent of the Central Limit
Theorem, it can be established that the distribution of appropriately scaled ex-
treme outcomes converges to one of three particular distributions, irrespective of
the actual distribution of X. Of these three distributions, one, the Weibull, has
a finite endpoint, while the second, the Gumbel, has exponentially declining tails
and includes the normal in its domain of attraction as its most prominent member.
The last limit distribution is the Fréchet, which takes the form exp[−(−x)α], where
α is known as the tail index. The Pareto distribution (1) is the most prominent
member in the domain of attraction of the Fréchet class. If the Pareto holds ex-
actly, a maximum likelihood estimator of the tail index is the Hill estimator which
is equivalent to the linear regression (2). As a result, the tail index is the same
statistic as the power in the power law in Gibrat’s and Zipf’s laws.

1There are some other conditions, see e.g. de Haan et al. (1989) or Embrechts et al. (1997).
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2.4 Financial Risk Analysis

A different application of power laws is the estimation of financial risk. Because
financial returns are well–known to be heavy tailed, the relevant limit distribution
for large outcomes of financial return processes is the Fréchet, implying that fi-
nancial returns have Pareto type tails. As a result, EVT has become a common
technique for forecasting extreme financial risk. As such, financial risk analysis
and the Gibrat–Zipf laws share important traits, especially in statistical analysis,
and many of the estimation issues are the same.

2.5 What about Dependence?

There is no reason to believe that any of the data types considered here, be they
city sizes, firm sizes, or financial returns, are independent. Fortunately, the analysis
does not rely on the assumption of independence.

The fundamental result from which the power laws are derived, i.e. the Kesten
equation, (4) explicitly assumes that the underlying data is not independent. It
is well known that the power laws hold under common forms of dependence, i.e.,
ARMA. In the specific case of financial returns, de Haan et al. (1989) demonstrate
that an ARCH process is one form of the Kesten equation, implying Pareto tails.
Several authors, e.g. Hsing (1991), and Resnick and Stărică (1996) show that the
Hill estimator is a consistent estimator under ARMA and ARCH type dependent
processes.

2.6 Which observations to Include?

If the Pareto distribution holds exactly, then one should use all available obser-
vations in order to estimate α efficiently. Unfortunately, this will only happen in
special circumstances. In general, the Pareto approximation only holds asymptot-
ically and both the least squares (LS) estimator (2) and the Hill estimator will be
biased.

Several authors, (e.g. Mansfield, 1962; Gabaix, 1999; Ijiri and Simon, 1977) note
that power laws do not hold exactly for all observations, and that some minimum
threshold for firm or city sizes needs to be established. Ijiri and Simon (1977)
further note the specific form of the bias in the LS estimator of (2), and attempt
to correct for the bias by including non–linear terms in the regression. This is
precisely where EVT makes a valuable contribution in understanding the power
laws. The reason is that by using EVT, one can quantify the deviation from the
Pareto distribution and derive optimal estimators of the tail index and hence the
Gibrat and Zipf coefficients. This is possible because one can measure the increase
in bias as the sample includes more observations away from the maxima, and the

7



increased variance as the sample size decreases. A key objective of this paper is
the development of technique to measure the magnitudes of the of the variance
and bias in order to offset them optimally and hence obtain an optimal estimate
of the tail index.

3 Estimation Theory

A key difficulty for the statistical implementation of extreme value theory (EVT)
is the determination of how many observations to use in the estimation of the tail
index, α. In the special case when the tails follow the Pareto distribution, the
Hill estimator can be used with all available observations. In that case the Hill
estimates attain the Cramer–Rao lower bound. In contrast, the focus on a larger
class of distribution functions which only the tails have a Pareto shape. To this
end consider the class of distribution functions which satisfy:

F (x) = 1 − ax−α
[
1 + bx−β + o

(
x−β

)]
, β > 0, as x → ∞. (5)

This class covers such diverse distributions as the Student-t, sum–stable, F, Burr,
and the Fréchet. Due to the presence of the higher order terms, however, the Hill
estimator will be biased, where the bias increases with the number of observations.
As a result, the tail threshold must be estimated in such a way that the included
higher order statistics balance the variance against the bias, which in turn neces-
sitates estimating the higher order parameter β. We develop below an estimator
for the optimal threshold sn by using a double subsample bootstrap technique.
The results are presented as a series of Theorems with all proofs relegated to the
Appendix.

3.1 k-Moment Ratio Tail Index Estimators

Let {X1, ..., Xn} be a sample of size n of IID random values with common distri-
bution F (x) which satisfies (5). Consider the descending order statistics from this
sample around a given threshold s : X(1) ≥ · · · ≥ X(m) > s ≥ X(m+1) ≥ · · · ≥ X(n).
The set A is the set of order statistics which strictly exceed s :

A (n, s,m) =
{

X(1), ..., X(m)

∣∣X(i) > s, i = 1, ..., n
}

.

The number of elements in A will be random if the threshold s is fixed before
sampling; the number of elements is then denoted by capital M or M (s) to reveal
its dependence on the threshold choice. Also, we will use the indicator function
I (Xi ∈ A) which takes the value of 1 when X(i) is in A and 0 otherwise.
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Define the conditional k−th order log empirical conditional moment from a sample
X1, ..., Xn of n IID draws from F (x) as follows:

uk (s) ≡ 1

M

n∑
i=1

I (Xi ∈ A)

(
log

Xi

s

)k

, (6)

and where uk(s) = 0 if A is empty. Our interest in this statistic is motivated by
the following obvious result, which is stated without proof, and used repeatedly in
the subsequent analysis:

Lemma 1

α

∫ ∞

s

(
log

x

s

)k

x−α−1dx = k!α−ks−α

From Lemma 1 it is immediate that the log empirical conditional moments are
bounded in mean if F (x) adheres to (5), even though the k-th mean of Xi is
unbounded. Lemma 1 also motivates a class of estimators for the tail index α.
Dańıelsson et al. (1996) introduced the following class of estimators for the inverse
of the first order tail index, 1/α:

Definition 2 The k-moment ratio estimator, denoted as wk (s), for the inverse
tail index is

wk (s) ≡ 1̂/α =
uk (s)

kuk−1 (s)
, (7)

where k = 1, 2, ... are integer valued, and u0 (s) = 1.

The specific case where k = 1 is the Hill estimator whose properties are documented
by e.g. Hall (1982) or Goldie and Smith (1987). The Hill estimator is a special
case off the class of moment ratio estimators.

Hall (1982) and Goldie and Smith (1987) obtain the moment properties of the Hill
statistic w1. We extend the proofs to the general case of wk. Define the statistic
vk (s):

vk (s) ≡ 1

α
+ αk−1

(
uk

k!
− 1

αk

)
− αk−2

(
uk−1

(k − 1)!
− 1

αk−1

)
. (8)

We first obtain the mean and variance for this linearized statistic. In Theorem 7 we
subsequently show that the limiting distribution of wk (s) as n → ∞ has the same
mean and variance. Note that the choice of the threshold s is a function of the
sample size n. This is indicated by writing sn, though the notation is sometimes
suppressed for brevity.
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Theorem 3 For the class of random variables with density that satisfies (5), and
letting sα

n/n → 0, sn → ∞ as n → ∞ the bias of the linearized statistic vk is

EA

[
vk (sn) − 1

α

]
= − bβαk−2

(α + β)k
s−β

n + o
(
s−β

n

)
. (9)

Theorem 4 For the class of random variables with density that satisfies (5); and
letting sα

n/n → 0, sn → ∞ the variance of the linearized statistic vk is

VarA

[
vk (sn) − 1

α

]
=

sα
n

an

κ (k)

α2
+ o

(
sα

n

n

)
, (10)

where

κ (k) =
(2k)!

(k!)2 +
(2k − 2)!

((k − 1)!)2 − 2
(2k − 1)!

k! (k − 1)!
. (11)

The first few values of the κ (k) function are given below. Note the rapid increase
as k increases. 2

k 1 2 3 4 5 6 7
κ (k) 1 2 6 20 70 252 924

3.2 Optimal Theoretical Choice of s

By combining the variance (10) and the bias squared (9), we obtain the mean
squared error (MSE) of the linearized statistic vk (s):

MSE (vk (sn)) =
κ (k)

aα2

sα
n

n
+

b2β2α2k−4

(α + β)2k
s−2β

n + o

(
sα

n

n

)
+ o

(
s−2β

n

)
. (12)

From (12) we see that there is a delicate balance between bias and variance de-
pending on how fast sn → ∞ as n → ∞. Either the bias part or variance part
dominates, or they just balance, (see Hall, 1982). If the objective is to minimize
the asymptotic mean squared error (AMSE), then it is optimal to let the threshold
s depend on the sample size n in such a way that both leading terms in (12) vanish
at the same rate. The AMSE is given by the leading terms from (12):

AMSE (vk (sn)) =
κ (k)

aα2

sα
n

n
+

b2β2α2k−4

(α + β)2k
s−2β

n .

From the first order condition ∂ AMSE /∂sn = 0, one determines the optimal rate
by which sn → ∞ as n → ∞ such that the two terms in the AMSE are balanced
and the AMSE vanishes at the best possible rate.

2The results above are easily extended to non–integer log moments, but this is not needed for
our analysis.
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Theorem 5 For n sufficiently large, the unique AMSE minimizing asymptotic
threshold sn is

sn (vk) =

[
2ab2β3α2k−3

(α + β)2k κ (k)

] 1
α+2β

n
1

α+2β , (13)

and the associated minimal MSE of vk (sn) equals

MSE (vk (s̄n)) =
κ (k)

aα

[
1

α
+

1

2β

][
2ab2β3α2k−3

(α + β)2k κ (k)

] α
2β+α

n− 2β
2β+α + o

(
n− 2β

2β+α

)
.

(14)

The use of bars in the notation in (13–14) reflect that the chosen sn sequence min-
imizes the AMSE. Hall and Welsh (1984) show that this rate cannot be improved
upon by other estimators. Since 1 − F (s) = as−α

[
1 + O

(
s−β

)]
, the following

result for the number of upper order statistics is immediate:

n− 2β
2β+α M (s̄n) → a

[
2ab2β3α2k−3

(α + β)2k κ (k)

]− α
α+2β

(15)

with probability 1 as n → ∞.

From (12–14) it follows that if sn tends to infinity at a rate below n1/(2β+α), the
bias part in the MSE dominates, while conversely the variance part dominates if
sn tends to infinity more rapidly than n1/(2β+α). For the class vk (sn) we show that
on the basis of the AMSE criterion the only two elements of interest are v1 (s) and
v2 (s) .

Theorem 6 The v1 (s) and v2 (s) statistics are the only two estimators in the class
vk (s) , k = 1, 2, 3..., which are not dominated, in the sense of the AMSE criterion,
for all β/α ∈ R+ combinations.

Because 1+ β
α

� 2
β
α as α � β, we find that for β > 0, when the v1 (s) and the v2 (s)

statistics are each evaluated at their own asymptotic MSE minimizing thresholds
denoted as s̄1 and s̄2 respectively that:

AMSE (v1 (s1)) � AMSE (v2 (s2)) as α � β.

This implies that if v2 has a lower AMSE than v1, then v1 is asymptotically more
biased than the v2.

The asymptotic distribution of wk from 7 is given by:

Theorem 7 Suppose we choose sn = s̄n (vk) from (13). Then as n → ∞
√

M
(αwk (s̄n) − 1)√

κ (k)

D→N

(
−
√

α

2β
sign (b) , 1

)
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The estimator wk (sn) is conditional on the choice of sn. If the asymptotically op-
timal threshold s̄n can be estimated by ŝn such that ŝn/s̄n converges in probability
to 1, then the asymptotic normality of wn (s̄n) also applies to the case where s̄n is
replaced by its estimated value.

The limiting normal distribution has a mean which depends on the unknown nui-
sance factor

√
α/2β sign (b) . If this latter factor can be estimated consistently,

however, then it follows from Slutsky’s theorem that the claim of the asymptotic
normality of wk (s̄n) also applies to the case where the bias factor is estimated.

We can extend upon the convergence in distribution in Theorem 7 by considering
convergence in moments. Convergence in moments of w1 (sn) is straightforward.
For w2 (sn) convergence in moments is given by:

Lemma 8 Suppose F (x) in (5) is exactly Pareto. Then as sn → ∞, sα
n/n → 0

when n → ∞
lim

n→∞
E [w2 (sn)] = α−1

Lemma 8 extends to the general case in (5), e.g. if b < 0 the distribution function
exp (−αt) bounds the conditional probability of log (X/sn). Moreover, a similar
proof can be used to obtain convergence in the second moment.

The wk (s) estimators are also consistent under various forms of dependency. It
can be shown that regular variation is preserved under ARMA type dependence.
de Haan et al. (1989) prove that the unconditional distribution of ARCH processes
satisfy the regular variation property. Hsing (1991) and Resnick and Stărică (1996)
show that the Hill estimator is a consistent estimator under respectively ARMA
and ARCH type dependent processes by using point process techniques.

An alternative definition of the statistic wk (sn) is to make the number of highest
order statistics in set A a deterministic sequence mn, and to identify the threshold
as the mn+1−th highest order statistic Xmn+1. This switches the randomness from
M to the thresholds. Goldie and Smith (1987) argue that the two formulations are
essentially equivalent. Hall (1982) is based in the alternative interpretation and
derives a theorem analogous to Theorem (7) for the w1

(
X(m̄+1)

)
statistic, where

m̄n = O (Mn (s̄n)).

3.3 Estimation of the Tail Threshold sn

Hall (1990) proposes a bootstrap procedure for estimating the tail threshold in the
special case where α = β. His method has two important limitations. First, it only
yields convergence in distribution, implying that statistics depending on sn do not
converge in probability. Second, it assumes that α = β which rules out relevant
classes of distributions, such as the Student-t. We propose a technique addressing
both issues.
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Before we can state our main results, we need to provide some preliminary results.
In addition, we establish some intuition behind our result.

For the case k = 1 the standard bootstrap equivalent of the expectation

MSE(w1) = E

[(
w1 (sn) − 1

α

)2
]

is
1

R

R∑
r=1

[(
w1,r (sn) −

(
1

α

))2
]

, (16)

where w1,r is calculated on a bootstrap resample of the original sample and R is the
number of bootstrap resamples. The problem is, however, that the benchmark 1/α
for the MSE is unknown. We suggest replacing 1/α by one of the other available
estimators as the benchmark

1

R

R∑
r=1

[
(w1,r (sn1) − w̃1 (s̃n))2] ,

and where w̃1 (s̃n) is some consistent alternative estimator like w2(sn), which has
the same convergence speed as w1,r (sn1), but a different multiplicative constant.
In effect, w1,r (sn1)− w̃1 (s̃n) is an estimator of zero. We therefore replace w1,r (sn1)
with a statistic for which the true value is known, i.e., is independent of α, but with
an AMSE that has the same convergence rate. It does, however, have a different
multiplicative constant, as the AMSE of the w1 statistic, and we correct later in
the procedure for the multiplicative constant. This is reminiscent of the use of
control variates for variance reduction in Monte Carlo estimation.

In particular, we focus on the statistic:

z (sn) ≡ w2 (sn) − w1 (sn) . (17)

We showed earlier the consistency of all wk statistics as estimators of 1/α for

sn = s̄n = ckn
1

2β+α . It follows that the z (s̄n) statistic converges to 0 as n → ∞. We
now show that the AMSE (z) has the same order of magnitude as the AMSE (wk).
To this end define the linearized counterpart to z (sn), using (8):

q (sn) ≡ 1

α
− 2u1 (sn) +

α

2
u2 (sn) .

We can now establish:

Theorem 9 For the class of random variables where the density satisfies (5), then
sn → ∞, sα

n/n → 0 as n → ∞

EA [q (sn)] =
bβ2

α (α + β)2 s−β
n + o

(
s−β

n

)
,
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and

VarA [q (sn)] =
1

α2

sα
n

an
+ o

(
sα

n

n

)
.

Corollary 10 For n sufficiently large the AMSE (q) minimizing asymptotic thresh-
old level sn (q) is

sn (q) =

(
2ab2β5

α (α + β)4

) 1
2β+α

n
1

2β+α . (18)

By comparing s̄n (vk) from (13) with the sn (q) from (18) we see that

sn (q)

s̄n (vk)
=

(
β2 (α + β)2k−4

α2k−2
κ (k)

) 1
2β+α

.

Hence the two threshold values only differ with respect to their multiplicative
constants, but increase at the same rate with respect to the sample size n. From
Corollary 10 we have that the asymptotic MSE(q) is minimized by sn (q). By the
analogue to Theorem 7 for the z (sn) statistic in (18), s (q) then also asymptotically
minimizes the MSE of the zn (sn) statistic.

However, the practical problem of finding this value remains. One possibility is
a bootstrap of z2 (sn) , i.e. calculate the bootstrap average (1/R)

∑R
r z2

r (sn), and
minimize this average with respect to sn. Before we do this, we have to worry about
convergence in the correct mode. The full sample bootstrap does not produce an
estimate which is asymptotic to sn (q). In the proof to Theorem 7 we showed that√

Muk is asymptotically normally distributed. By the Taylor expansion from the
proof to Theorem 9 it then readily follows that

√
Mz is also asymptotically nor-

mally distributed. Hence Mz2 is asymptotic to a χ2
(1) distributed random variable.

The mean of Mz2 is easily shown to be asymptotic to
(
sn

)α
/n times the value of

the AMSE (z) as given in (36). But because Mz2 only converges in distribution,
the average of the full sample bootstrap values Mz2

r has the same distributional
properties as Mz2. To show this, use the log–linearity of the u1 and u2 in the data
and consider the linearized statistic q (s).

To be able to back out the optimal rate, we need convergence in probability.
Moreover, for the practical implementation of bootstrap procedure we need in
addition convergence in moments. We now show that the desired convergence can
be obtained through the subsample bootstrap procedure. Before we turn to the
proof, we discuss the main intuition.

Consider the Hill estimator

w1 (sn) =
1

M

M∑
1

Yi (sn) ,

14



where as in Lemma 8 Yi (sn) ≡ log
(
X(i)/sn

)
, X(i) > sn. Suppose we bootstrap

this statistic. The bootstrap average of the Hill statistic is:

1

R

R∑
r

w1,r (sn) =
1

R

R∑
r

1

Mr

Mr∑
i

Yi,r (sn) .

The bootstrapped statistic w1,r (s̄n) evaluated at the optimal threshold value s̄n is
therefore an average from the set{

Y(1) (s̄n) , ..., Y(M) (s̄n)
}

.

It follows by the weak law of large numbers that as the number of samples R
increases

1

R

R∑
r

1

Mr

Mr∑
i

Yi,r (s̄n)
P→ 1

T

T∑
i

Y(i) (s̄n) as R → ∞.

By Theorem 7 we know that for sn = s̄n from (13),
(
1/
√

M
)∑M

i Yi (s̄n) is asymp-

totically normally distributed. Now suppose that sn is not of the order n
1

2β+α ,
cf. (13). It follows from (12) that either the bias dominates asymptotically, if

sn = o
(
n

1
2β+α

)
, or that the variance dominates, if n1/2β+α = o (sn), see Hall

(1982). Consider taking subsample resamples of size n1 such that n1 = O (n1−ε) ,
where 0 < ε < 1. Let s̄n1be the AMSE minimizing threshold level for the sample

size n1 so that n1 ∼ n1−ε, s̄n1 = o
(
n

1
2β+α

)
. Since s̄n > s̄n1 , the bootstrapped statis-

tic w1,r (s̄n1) evaluated at the subsample optimal threshold value s̄n1 is therefore
an average from the larger set{

Y(1) (s̄n1) , ..., Y(M) (s̄n1) , Y(M+1) (s̄n1) , ..., Y(T ) (s̄n1)
}

.

As before, it follows that as the number of subsamples R increases

1

R

R∑
r

1

Mr

Mr∑
i

Yi,r (s̄n1)
P→ 1

T

T∑
i

Y(i) (s̄n1) as R → ∞ (19)

Define the bootstrap statistic

Q (s̄n1) =
√

m (s̄n1)[
1

Tn

Tn∑
i

Y(i) (s̄n1) −
1

α
], (20)

where m (s̄n1) = O(n(1−ε) 2β
2β+α ) cf. (15). As was shown by Hall (1982, th. 2, part 3),

for ε > 0, so that n1 < n, s̄n1 < s̄n then Q (s̄n1) → 0 in probability. Hence this is
also applies to the left hand side of (19) after subtracting 1/α and premultiplication

15



with
√

m (s̄n1). The idea is thus that subsample bootstrap averages conditional on
the subsample optimal threshold value are comparable to the corresponding full
sample statistic evaluated at a smaller threshold than s̄n. But conditional on this
smaller threshold value, the full sample statistic converges in probability rather
than in distribution. This embedding idea is the essence of the proof to our main
result.

Theorem 11 Suppose F (x) satisfies (5). Let n1 = O (n1−ε) for some 0 < ε < 1
be the bootstrap resample size. For given n let R → ∞ and determine ŝn1 such
that

1

R

R∑
r

[zr (ŝn1)]
2

is minimal. Then, as n → ∞

ŝn1 (z) /sn1 (q)
P→ 1

Note, sn1 (q) was defined in (18).

It is straightforward to show that for given sample size for s1 ∈ (
0, sn1 (q)

)
the

AMSE from (38) is monotonic and declining in s1. Also, for s1 = o
(
sn1 (q)

)
and

s1 > sn1 (q) , the right hand side of (38) is monotonic and increasing. The mono-
tonicity result implies that sn1 (q) can be located by searching for the minimum
to

1

R

R∑
r

[zr (s1)]
2

as s1 is increased from zero. For this procedure to work we need in fact convergence
in the 2nd moment of z . Thus in practice we minimize the second empirical moment
of the z-statistic, rather than minimizing the q-statistic. Therefore to ensure that
the convergence in probability from Theorem 11 can be used, convergence in the
mean of (m (s1) /R)

∑
r (zr (ŝn1))

2 is needed. By the argument that was used to
prove Lemma 8, this convergence immediately follows; we omit an explicit proof
for the sake of brevity.

An analogous procedure, and proof applies to the interpretation of the Hill statistic
with a fixed number of excesses and a random threshold that case we also have
that m̂n1(z)/mn1(z)→P 1, and

mn (z) = a

(
2ab2β5

α (α + β)4

)− α
2β+α

n
2β

2β+α . (21)

While it is more expedient to present the theoretical derivations in terms of the
threshold interpretation, however, in practice the minimization of the bootstrapped
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MSE (z) is done in terms of the index m. We minimize MSE (z) by stepwise in-
creases in the lowest extreme order statistic that is used as the stochastic threshold
in the calculation of the estimators.

In the end we are interested in the optimal m̄n (wk) instead of mn (z) from (21).
These two quantities are related as follows, recall (15):

mn (z)

m̄n (wk)
=

[(
β

α

)2(
1 +

β

α

)2k−4

κ (k)

]− 1

1+
2β
α

. (22)

Hence, a conversion from m̂n (z) to m̂n (wk) requires a consistent estimate of the
ratio of the first and second order tail parameters β/α. The following result exploits
the fact that mn1 (z) varies regularly.

Theorem 12 A consistent estimator for β/α is

β̂/α =
log m̂n1 (z)

2 log n1 − 2 log m̂n1 (z)
. (23)

Theorem 12 in combination with (22) implies that

m̂n1 (w2) = m̂n1 (z)

[√
2

log m̂n1 (z)

2 log n1 − 2 log m̂n1 (z)

] 2 log n1−2 log m̂n1 (z)

log n1

(24)

is a consistent estimator for mn1 (w2) . Similar expressions can be obtained for
m̂n1 (w1) . But these estimators do not exploit all the information which is available
in the full sample, because these are restricted to the subsample size n1.

The second conversion we need is to go from m̂n1 (w2) to m̂n (w2) . Theorem 11,
(13), and (15) give:

Corollary 13 Suppose Theorem (11) applies, then

m̂n1 (wk)

mn (wk)

(
n

n1

) 2
2+α/β

P→ 1 (25)

One might consider using relation (25) as an equality and to replace α/β in the

exponent by α̂/β from (23). Unfortunately, even though the β̂/α estimates in (23)

is consistent, its rate of convergence is unknown. This frustrates using β̂/α in (25)
because α/β appears in the exponent (and hence its convergence rate may be too
slow, i.e. less than ε log n). A solution is to do a second bootstrap on an even
further reduced subsample size n2, and to choose n2 such that the multiplicative
factor in (25) can be replaced by a known value.
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Theorem 14 Let n1 = O (n1−ε) for some 0 < ε < 1/2 and choose n2 = n2
1/n.

Suppose m̂n2 (z) is the consistent estimator of m̄n2 (z) (21), from the subsample
bootstrap procedure on subsample resamples of size n2. Then

(m̂n1 (z))2

mn (z) m̂n2 (z)

P→ 1. (26)

Combine result (26) with (24) to arrive at the consistent estimator

m̂n (w2) =
(m̂n1 (z))2

m̂n2 (z)

[√
2

log mn1 (z)

2 log n1 − 2 log m̂n1 (z)

] 2 log n1−2 log m̂n1 (z)

log n1

. (27)

The other variants like m̂n (w1) follow easily.

The sn, or mn, and β/α can therefore be estimated by a double subsample boot-
strap procedure which rests on a choice for the subsample sizes n1 = n1−ε, where
1
2

> ε > 0, and n2 = n2
1/n. Asymptotically any n1 such that 1

2
> ε > 0 yields

a consistent estimate of α. Hence, asymptotic arguments provide little guidance
in choosing between any of the n1, which is desired for practical purposes. We
propose the following criterion.

The basis for our estimator of α is the minimization of its AMSE . The subsam-
ple bootstrap yields estimates of the AMSE (zn1) and AMSE (zn2) . By the same
arguments as were used in the proof to Theorem 14, one can show that[

̂AMSE (zn1)
]2

/ ̂AMSE (zn2) (28)

is asymptotic to AMSE (zn) . We then choose n1 by

arg min
n1

[
̂AMSE (zn1)

]2

/ ̂AMSE
(
zn2(n1)

)
. (29)

Choosing n1 in this way keeps the estimated MSE to a minimum.

Finally, we need to consistent estimator of sign (b) for the purpose of diagnosis.
Recall the mean of q (sn) from Theorem 9:

EA [q (sn)] = cs−β
n sign (b) + o

(
s−β

n

)
,

where c > 0. This suggests the following consistent estimator

̂sign (b) = sign (z (sn)) , with sn < sn. (30)

Note that we choose sn < sn, or alternatively mn > mn, to guarantee that the bias
asymptotically dominates the variance. We also experimented with the following
estimator for sign (b)

sign ([w2 − w1] − [w4 − w3]) .

It is straightforward to check that this estimator is consistent as well.
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4 Prediction of Extremes

A major application of extreme value theory is the estimation of borderline in–
sample and out–of–sample probability–quantile (P,Q) combinations. We show
that the properties of the quantile and tail probability estimators follow from the

properties of 1̂/α.

Consider two excess probabilities p and t with p < 1/n < t, where n is the sample
size. Associated with p and t are large quantiles xp and xt, where xp : 1−F (xp) = p,
and xt : 1−F (xt) = t. Since p < 1/n, it is likely that xp > max {X1, . . . , Xn} . The
quantile xp can be estimated by extrapolating the empirical distribution function
Fn (x) by means of its regular variation properties. Using the expansion of F (x)
in (5) we use F (xp)/F (xt) to obtain the following estimator. Ignore the higher
order terms in the expansion, replace the probability t by the random variable
M/n with xt fixed at sn. Substitute for 1/α any wk (sn) estimator. This gives

x̂p = xt

(
M

np

)wk

. (31)

We can now prove:

Theorem 15 Suppose that the conditions of Theorem 7 and (11) do hold. In
addition take xt = ŝn. Suppose that npn converges to a constant τ which may be
zero. Then the quantile estimator x̂p is asymptotically normally distributed:

√
M

log (M/np)

(
x̂p

xp

− 1

)
/
√

κ (k) ∼ N

(
−sign (b)√

2βα
,

1

α2

)
.

An estimator for the reverse problem can be developed as well. By solving for p
in (31) we get:

p̂ =
M

n

(
xt

xp

)α̂

. (32)

Without proof, since it essentially duplicates the arguments used to prove Theorem
15, we state:

Theorem 16 Under the same conditions as in Theorem 15, the excess probability
estimator p̂ is asymptotically normally distributed, that is

√
M

log (xt/xp)

(
p̂

p
− 1

)
/
√

κ (k)
D→N

(
α2 sign (b)√

2αβ
, α2

)
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Note that the asymptotic distributions of the normed quantiles and probabilities
differ by a multiplicative factor of −α2. This is a Bahadur-Kiefer type result for
out of sample (P,Q) combinations, (see Serfling, 1980). In other words, it does
not matter from which axis one looks at the distance between the empirical distri-
bution function and the distribution function, even if out–of–sample the empirical
distribution function is replaced by the (p, x̂p) or (p̂, xp) curves.

5 Monte Carlo Experiments

In order to access the performance of our estimator for the tail threshold, we
generate pseudo random numbers from several known distributions and stochastic
processes. The criteria for choosing these particular distributions was that they
should resemble observed heavy tailed economic variables such as the market cap-
italization, city size, and return variables used below. In all cases we know the
true α, and in most cases the true threshold value and quantiles.

The distributions chosen are Student–t, the sum–stable–Levy, Extreme Type II,
and the log Pareto which is defined as:

F (x) = 1 − x−α [1 + α log x] .

The stochastic processes are the normal GARCH, Student-t MA which is an MA
process with Student–t(3) innovations, and a Student-t stochastic volatility (SV)
model. The Student(3) SV(β,γ) is defined as:

Yt = UtWtH
2
t , , Pr [Ut = −1] = 0.5, Pr [Ut = 1] = 0.5

Ht = βQt + γHt−1, Qt ∼ N (0, 1) , β = 0.1, γ = 0.9

Wt =

√
1 − γ2

β2

√
3√
Zt

, Zt ∼ χ(3).

This process generates volatility clusters, and was designed in this specific way be-
cause it follows that the stationery marginal distribution function of Yt is Student–t(3)

distributed, and hence we can determine the theoretical second order parameters,
which for the GARCH model are unknown. The sample size was 5,000, and the
simulations were replicated 250 times, where the w2 statistic was used in the esti-
mation.

The estimates of the model parameters, i.e. 1/α, β/α, and the ratio of the es-
timated threshold to the true threshold mn/mn, are reported in Table 1. The
estimates of α are quite accurate, the lowest root mean squared error (RMSE) is
1.7% for the Type II Extreme(4) value distribution function, while highest RMSE
values are 17% for the sum–stable (1.8). This is due to the fact that when the
characteristic exponent of the Stable distribution equals 2, the stable law switches
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from being fat tailed to the normal distribution which has thin tails. Thus while
1/α jumps at the left end from the open interval (0.5,∞) to 0, the estimator
smoothly interpolates between 0.5 and 0. For the stochastic processes, the RMSE
ranges from 6.6% for the MA process to 11% for one of the GARCH models. The
estimates of β/α are not as precise as for α, since β is a second order parameter,
and the extreme realizations are less informative about the second order behav-
ior than the first order behavior. The optimal number of order statistics mn is a
function of the second order parameters, and hence it is not surprising to observe
a similar behavior as for β/α.

The results in Table 2 are more interesting from an economic point of view since
they are concerned with the estimation of out–of–sample probability—quantile
(P,Q) combinations. We report the quantile estimate for the borderline in sample
probability p = 1/n and the out–of–sample probability p = 1/3n. For comparison,
we also report what is known in the financial industry as “worst case analysis”
where the maximum value is used as an estimator of the expected maximum. The
main criteria for analysis is the average quantile estimates across simulations and
the scale free coefficient of variation (CV). The quantile estimator x̂p performs
well when judged by the mean and the CV. The true mean is unknown in the
GARCH case. The CV does not change much when moving from the in–sample
p = 1/n to the out–of–sample p = 1/3n. Moreover, the performance of the quantile
estimator is fairly consistent across distributions and stochastic processes in terms
of the CV. In contrast, the worst case analysis has considerably worse performance,
e.g., it’s CV’s are consistently more that twice as large than their tail estimation
counterparts.

5.1 Tail Determination and Rank Order Relationships

Typical estimates of α in the market structure literature are in the range of 1–2. In
order to gauge the impact of choosing different threshold levels, we simulate 1,000
realizations from a Student–t(1.5) distribution, which has similar tail properties as
some of our data sets. We plot the log rank–order relationship in Figure 1, and
use two arbitrary threshold levels to estimate α with least squares using (2). In
this case we know that the true value of α is 1.5, however, the two estimates give
us 1.3 and 1.9, for tail sample sizes 50 and 250, respectively. In effect it is the
nonlinearity of the tail which biases the estimation, illustrating the importance of
optimally determining the tails.

6 Estimation

We apply our estimator of the tail distribution to two distinct problems, size–rank
relationships and financial risk analysis.
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6.1 Market Structure

We employ two different datasets to estimate the Zipf–Gibrat coefficients:

• Firm size: the 1000 largest U.S. corporations in 1999, ranked by revenue.
The data was obtained from Fortune.com.

• City size: the largest cities in Russia, UK, India, Japan, Brazil, US, and
China.

The results are shown in Table 3 and graphically in Figures 2 and 4.

For firm size we see that the optimal number of observations in the tail is 32,
implying a tail index of 2.1. By using all observations in the regression we get an
estimate of the tail index of 1.2.

The optimal number of observations in the tail, mn for the city size data is 59,
with a tail index of 2.0. However, when using all observations, the tail index is
estimated as 1.0. Figure 3 shows what happens when we vary mn from almost no
observations (15) in the tail, to using almost all observations (1652). The estimates
of α vary considerably, from 0.98 to 2.24, with the estimates generally declining
as the tail sample size increases. This result is common in EVT estimation, giving
rise to the term Hill horror plot for plots like Figure 3. If the data was exactly
Pareto distributed, the Hill horror plot should be roughly linear and horizontal.

Gabaix (1999) estimates the Zipf coefficient (α) for 135 largest U.S. metropolitan
areas in 1991, and finds a value of 1. Figure 1 in his paper which plots this dataset
shows clear signs of non–linearity of the type discussed above. Our city size data
(Figure 2) has the same features.

We present results from using two tail sample sizes, the first from our procedure,
and the second with all observations. This results in a wide range of estimates
of the Gibrat–Zipf coefficients. The reason is that the log rank–size is not linear
but convex, as can be seen in Figures 2 and 4. The deviation from linearity is
very clear, and it is obvious from the Figures that the choice of threshold strongly
influences the estimate of α. Therefore, any choice of a tail threshold, except the
one obtained here, will be less accurate than our estimates.

6.2 Forecasting Financial Risk

We estimate the risk in financial return series with four datasets; two with high
frequency foreign exchange datasets and two with daily returns on the SP–500
stock index3. For each dataset, we compute a number of standard statistics. The

3The FX data was obtained from Olsen and Associates and is quotes on the USD–DM spot
contract from October 1992 to September 1993. We also use the first and last 5,000 daily returns
from the daily S&P 500 index over the period 1929 to 2000.
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mean and standard error are annualized by using a factor of 250 and 52,558 for
the stock index and FX datasets respectively. In addition the skewness, kurtosis,
and the minimum log return are reported. Subsequently, we applied our estima-
tion procedure to the lower tail of the data, and report estimates of parameters
1/α, β/α, and the quantiles x1/n, and x1/3n. Between brackets we give the 95%
confidence band.

The results are reported in Table 4. We note that the FX tails are fairly symmetric,
while the S&P tails are more asymmetric, reflecting the great depression and the
1987 crash. The tail index estimates are close to 3. From an economic point of
view the interesting estimates are the quantile estimates. Table 4 reveals that the
risk of investing in stocks has come down over time, and that the risk in the FX
market is fairly stable over the period of one year. It is especially interesting to
note the difference in the risk forecasts in the 1929–1946 period compared to 1981–
2000. Even if the realized maximum loss is lower in the first period, the forecasts
give a different picture. In the first period we expect larger losses than predicted
by the realized minima, while in the second period this result reverses. In other
words, our forecast indicates that the 1987 crash had a probability much lower
than 1/5000, the probability forecast that obtains if it is estimated with only the
probability of the realized sample minima.

7 Conclusion

Accurate estimation of the tail threshold is essential in many applications of mar-
ket structure analysis, and financial risk forecasting. The estimation of the tail
shape in those applications usually depends on the data being Pareto distributed,
an assumption that in usually incorrect in practice. Extreme value theory (EVT)
provides unique insight into these problems, not only in providing a formal envi-
ronment in which to analyze these problems, but more importantly in enabling
optimal estimation of tail shapes.

Unfortunately, determining the tail threshold proves to be very challenging in most
cases. We propose a bootstrap procedure for estimating the optimal tail threshold
in extreme value analysis, where we use a two step subsample bootstrap procedure
for estimating the threshold such that the bias and variance of the estimated tail
index decline at the same rate and achieve convergence in probability to normal
distribution function of the estimated tail index.

We evaluate our estimator with a series of Monte Carlo experiments using a variety
of heavy tailed distributions and stochastic process chosen for the resemblance to
economic data. Subsequently, we apply our estimator to market structure prob-
lems, and financial risk forecasting.
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A Mathematical Derivations

Before we can proof the first two theorems, we need the following preliminary
results. If s is fixed sufficiently high, then by (5) and the binomial distribution we
find that the expected number of elements in the set A equals

E (M) = nas−α
[
1 + bs−β + o

(
s−β

)]
.

We also need the expectation of M given that there is at least one element in A,
which we write as

E1 (M) ≡ E (M |M ≥ 1) .

For large n

E1 (M) = E (M) +
F (s)n

1 − F (s)n E (M)

= ans−α + o
(
ns−α

)
.

From the Taylor series of 1/n around 1/ E (M), one shows that

E1

(
1

M

)
=

sα

an
+ o

(
sα

n

)
.

Let EA (·) denote the conditional expectations operator where the expectation is
computed with respect to the measure dF (x) conditional on X(i) being an element
in the set A.

Lemma 17 If the density f (x) adheres to (5), then the conditional expectation of
the k − th order log empirical moment is

EA (uk (sn)) = k!

(
1

αk
+

bs−β
n

(α + β)k

)
+ o

(
s−β

n

)
, (33)

for sn → ∞, sα
n/n → 0 as n → ∞.

Proof. Note that conditionally on s, the upper order statistics in A are indepen-
dently distributed. Hence, the expected value of uk (s) equals the expected value
of a single element from the sum in (6). Apply Lemma 1 to each of the three terms
in the density expression (5). Hence, the conditional expression (33) follows from

EA (uk (s)) =
1

1 − F (s)n

1

1 − F (s)

∫ ∞

s

(
log

x

s

)k

f (x) dx

=
k!

1 + bs−β

[
1

αk
+

bs−β

(α + β)k

]
+ o

(
s−β

)
.
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Proof of Theorem 3. By application of Lemma 17 we get that

EA [vk (s)] =
1

α
+ αk−1 bs−β

(α + β)k
− αk−2 bs−β

(α + β)k−1
+ o

(
s−β

)
(34)

=
1

α
− bβαk−2

(α + β)k
s−β + o

(
s−β

)
(35)

Proof of Theorem 4. By definition of the linearized statistic vk (s) in (8) and
the variance operator

VarA

[
vk (s) − 1

α

]
=α2k−2 VarA

[
uk (s)

k!

]
+ α2k−4 VarA

[
uk−1 (s)

(k − 1)!

]
− 2α2k−3 CovA

[
uk (s)

k!
,
uk−1 (s)

(k − 1)!

]
.

We calculate the various parts by using the definition of uk (s) in (6), the indepen-
dence of Xi and Xj, Lemma 17 and the above preliminary result for E1 (1/M) .
For the variance part we find when sn → ∞, sα

n/n → 0 as n → ∞:

VarA

[
uk (s)

k!

]
=

1

(k!)2

{
EA

[
u2

k (s)
]− (EA [uk (s)])2}

=
1

(k!)2

1

P {M ≥ 1}


n∑

m=1

P [M = m]

m2
EA

( m∑
i=1

(
log

Xi

s

)k
)2


−
(

EA

[(
log

X(1)

s

)k
])2


=

1

(k!)2

1

1 − F (s)n

{
n∑

m=1

P {M = m}
m

(
EA

[(
log

X(1)

s

)2k
])

−
(

EA

[(
log

X(1)

s

)k
])2

}

=
sα

an

{
(2k)!

(k!)2

[
1

α2k
+

bs−β

(α + β)2k

]
−[

1

α2k
+

2bs−β

αk (α + β)k
+

b2s−2β

(α + β)2k

]}
+ o

(
sα

n

)
=

sα

an

1

α2k

(
(2k)!

(k!)2 − 1

)
+ o

(
sα

n

)
.
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For the covariance, a similar procedure yields

CovA

[
uk (s)

k!
,
uk−1 (s)

(k − 1)!

]
=

1

k! (k − 1)!

1

1 − F (s)n

{
n∑

m=1

P {M = m}
m

}
×{

EA

[(
log

X(1)

s

)2k−1
]
− EA

[(
log

X(1)

s

)k
]

EA

[(
log

X(1)

s

)k−1
]}

=
1

k! (k − 1)!

sα

an

{
(2k − 1)!

[
1

α2k−1
+

bs−β

(α + β)2k−1

]

− k! (k − 1)!

[
1

α2k−1
+

1

αk−1

bs−β

(α + β)k
+

1

αk

bs−β

(α + β)k−1
+

(
bs−β

)2
(α + β)2k−1

]}
+ o

(
sα

n

)
=

sα

an

1

α2k−1

(
(2k − 1)!

k! (k − 1)!
− 1

)
+ o

(
sα

n

)
.

Proof of Theorem 6. From (14) we have that, for a given n,

AMSE (vk (s)) = cκ (k)2β/(2β+α)

[
α

α + β

] 2αk
2β+α

,

and where c > 0. Comparing

AMSE (vk−1 (s)) � AMSE (vk (s)) ,

we find that this is equivalent with

1 +
β

α
�
[

κ (k)

κ (k − 1)

] β
α

.

Now note that [κ (k) /κ (k − 1)]β/α dominates 1 + β/α for all values of β/α > 0 if
κ (k) /κ (k − 1) > e ≈ 2.71. This holds for k = 3, 4, ...

Proof of Theorem 7. For sn → ∞, sα
n/n → 0 as n → ∞ it is a direct

consequence of the proof to Lemma 17 that the statistics log
(
X(i)/sn

)
for which

X(i) ∈ A do have a nonzero second moment and bounded third moment, since

EA

[(
log

X(i)

sn

)k
]

=
k!

αk
+ O

(
s−β

n

)
.

This statement carries over to the case where sn = s̄n (vk) → ∞ as n→ ∞.
Conditionally on M , the order statistics in set A are independently distributed.
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Therefore by Liapounov’s double array central limit theorem with independence
within rows, see (Serfling 1980, sect. 1.9.3), we have that

√
Muk (sn)

converges to a normal distribution for any sequence M → ∞, sn → ∞. In particu-
lar for sn = s̄n (vk), the number of elements M in the set A is such that Mn (s̄) → ∞
with probability 1, recall (15). This result carries over to the linearized statistic
vk (sn) , i.e.

√
Mvk (s̄n) converges to a normal distribution. By (8) and Cramér’s

delta method, it follows that
√

M (αwk (s̄n) − 1) also converges in distribution to
a normal distribution. The mean and variance of this normal distribution readily
follow from Theorems 3 and 4, and the fact that

√
M/sβ

n converges in probability

to (α + β) k
√

κ (k)/
√

2b2β3α2k−3, which follows directly from combining (15) with
(13).

Proof of Lemma 8. By the Pareto assumption

P

{
log

(
X

sn

)
> t

∣∣∣∣X > sn

}
= e−αt.

Denote Yi = log
(
X(i)/sn

)
, where X(i) is the i − th order statistic that exceeds sn.

We have the chain

2 E
[
(w2 (sn))2] ≤E

[(
Y 2

1

Y2 + · · · + Ym

+ · · · + Y 2
m

Y1 + · · · + Ym−1

)2
]

= m E

[(
Y 2

1

Y2 + · · · + Ym

)2
]

+ m (m − 1) E

[
Y 2

1 Y 2
m

(Y2 + · · · + Ym) (Y1 + · · · + Ym−1)

]
.

Since from the convolution of exponentials

P

{
m∑

i=1

Yi > x | Yi > 0

}
=

∫ ∞

x

αm

Γ (m)
tm−1e−αtdt,

a transformation of variables argument gives

E

[(
1∑m

i=1 Yi

)�+1
]

=
α�+1

(m − 1) (m − 2)... (m − � − 1)
.

Use this to rewrite the previous inequality

2 E
[
(w2 (sn))2] ≤ m

α4 E [Y 4
1 ]

(m − 2) (m − 3)
+ m (m − 1)

α2 E [Y 2
1 ]

(m − 2) (m − 3)
,
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where we used Holder’s in equality to obtain the second part (for X,Y ≥ 0:
E [XY ] ≤√

E [X2] E [Y 2]). Using the moments of the exponential d.f. we get

E
[
(w2 (sn))2] ≤ 30, ∀m ≥ 4.

This bound is sufficient for uniform integrability of the mean and hence the con-
vergence in the mean.

Proof of Theorem 9. By Lemma 17 we have

EA [q (s)] =
1

α
− 2

1 + bs−β

[
1

α
+

bs−β

α + β

]
+

α

1 + bs−β

[
1

α2
+

bs−β

(α + β)2

]
+ o

(
s−β

)
=

bs−β

1 + bs−β

β2

α (α + β)2 + o
(
s−β

)
.

And similar to the proof of Theorem 4, we derive

VarA [q (s)] = 4 Var [u1 (s)] − 2α Cov [u1 (s) , u2 (s)] +
α2

4
Var [u2 (s)]

=

{
4

α2
− 4α

1

α3

(
6

2
− 1

)
+

α2

4

4

α4

(
24

4
− 1

)}
sα

an
+ o

(
sα

n

)
=

1

α2

sα

an
+ o

(
sα

a

)
.

Proof of Corollary 10. From Theorem 9 we calculate the AMSE [q] as

1

α2

sα

an
+

b2β4

α2 (α + β)4 s−2β. (36)

Minimizing the AMSE with respect to s then yields the claim.

Proof of Theorem 11. Use again the shorthand notation Y k
i,r (s) =

(
log

Xi,r

s

)k

,

where Xi,r ≥ s. The bootstrap MSE version of the linearized statistic q (sn) is (we
use s1 as shorthand for sn1):

1

R

R∑
r

[qr (s1)]
2 = (37)

1

R

R∑
r

 1

α2
+ 4

(
1

Mr

Mr∑
i

Yi,r (s1)

)2

+
α2

4

(
1

Mr

Mr∑
i

Y 2
i,r (s1)

)2

− 4

α

1

Mr

Mr∑
i

Yi,r (s1) +
1

Mr

Mr∑
i

Y 2
i,r (s1)

−2α

(
1

Mr

)2 Mr∑
i

Yi,r (s1)
Mr∑
i

Y 2
i,r (s1)

}
.
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For each of the terms within the curled brackets first drive R → ∞ and subse-
quently take n → ∞. To this end suppose that s1 = o (s̄n) . Hence, for the second
term on the right hand side of (37) we can write

1

R

R∑
r

1

M2
r

(
Mr∑
i

Yi,r (s1)

)2

=
1

R

R∑
r

1

M2
r

Mr∑
i

(Yi,r)
2 +

1

R

R∑
r

1

M2
r

Mr∑
i�=j

Mr∑
j

Yi,rYj,r.

Consider the first term of this expression. We find that as R → ∞

1

R

R∑
r

1

M2
r

Mr∑
i

[Yi,r (s1)]
2 P→ sα

1

an1

1

T

T∑
i

Y 2
(i) (s1)

Where we use

plimR→∞

n1∑
i=1

R∗
i

R

1

i
=

sα
1

an1

.

Similarly, the second term tends in probability to(
1 − sα

1

an1

)
1

T (T − 1)

T∑
i�=j

T∑
j

Y(i) (s1) Y(j) (s1) .

Recombine the two terms. Recall the way in which we calculated the variance part
in the proof of Theorem (4). Subsequently drive n → ∞ to show that when we

choose m (s̄1) = O
(
n1−ε 2β

2β+α

)

m (s̄1)

 1

R

R∑
r

1

M2
r

(
Mr∑
i

Yi,r

)2

−

 1

α2

sα
1

an1

+
1(

1 + bs−β
1

)2

(
1

α
+

bs−β
1

α + β

)2

 P→ 0
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By similar reasoning, one finds the other terms on the right hand side of (37) are
asymptotic to respectively:

1

R

R∑
r

1

M2
r

(
Mr∑
i

Y 2
i,r (s1)

)2

≈ sα
1

an1

20

α4
+

4(
1 + bs−β

1

)2

(
1

α2
+

bs−β
1

(α + β)2

)2

;

1

R

R∑
r

1

Mr

Mr∑
i

Yi,r (s1) ≈ 1

1 + bs−β
1

(
1

α
+

bs−β
1

α + β

)
;

1

R

R∑
r

1

Mr

Mr∑
i

Y 2
i,r (s1) ≈ 2

1 + bs−β
1

(
1

α2
+

bs−β
1

(α + β)2

)
;

1

R

R∑
r

1

M2
r

Mr∑
i

Yi,r (s1)
Mr∑
i

Y 2
i,r (s1) ≈ sα

1

an1

4

α3
+

2(
1 + bs−β

1

)2

(
1

α2
+

bs−β
1

(α + β)2

)(
1

α
+

bs−β
1

α + β

)
.

Substitute these expressions into the appropriate places within the curled brackets
in (37). After rearrangement, one finds that

m (s1)

{
1

R

R∑
r

[qr (s1)]
2 −

[
1

aα2

sα
1

n1

+
b2β4

α2 (α + β)4

1

s2β
1

]}
P→ 0 (38)

for any s1 = o (s̄n) . By Corollary 10 and its proof, the asymptotic value of this
bootstrap MSE [q] is minimized at s1 = sn1 (q) , where sn1 (q) is given in (18). Since
by previous arguments z (s1) = Op (q (s1)) , sn1 (q) also minimizes the asymptotic
MSE of the z–statistic.

Proof of Theorem 12. Note that mn (z) from (21) is itself a regularly vary-
ing function with tail index 2β/ (α + 2β) . By the properties of regularly varying
functions we have that

log mn1 (z)

log n1

P→ 2β/α

1 + 2β/α

as n1 → ∞. Then use the fact that m̂n1 (z) /mn1 (z)
P→1

Proof of Theorem 14. Similar to Corollary 13 we have that

m̂n1 (z)

mn (z)

(
n

n1

) 2
2+α/β

P−→ 1

and
m̂n2 (z)

m̂n1 (z)

(
n1

n2

) 2
2+α/β

P−→ 1.
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Division combined with the fact that we choose nn2/n
2
1 = 1 yields the claim.

Proof of Theorem 15. Consider the quantile estimator (31) based on the
deterministic threshold interpretation of the tail index estimator

x̂p = xt

(
M/n

p

)wk(s)

, xt = s,

and write x̂p = x̂p

(
wk (s) , M

n

)
. Expand x̂p

(
wk (s) , M

n

)
into a first order Taylor

series around the point (
1/α, t

(
1 + bx−β

p

)
/
(
1 + bx−β

t

))
.

This gives

x̂p

(
wk (s) ,

M

n

)
= xt

(
t

p

)1/α
(

1 + bx−β
p

1 + bx−β
t

)1/α

+

xt

(
t

p

)1/α
[

1 + bx−β
p

1 + bx−β
t

]1/α

log

(
t

p

1 + bx−β
p

1 + bx−β
t

)[
wk (s) − 1

α

]
+

1

α
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(
t

p

)1/α
[
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p

1 + bx−β
t

]1/α(
t

p

1 + bx−β
p

1 + bx−β
t

)−1 [
M

n
− t

1 + bx−β
p

1 + bx−β
t

]
+

Op

[wk (s) − 1

α

]2

+

[
M

n
− t

1 + bx−β
p

1 + bx−β
t

]2
 .

Since xp > xt, and due to the property of slowly varying functions, we can write

xt

(
t

p

) 1
α

(
1 + bx−β

p

1 + bx−β
t

) 1
α

= xp

(
1 + o

(
x−β

t

)) 1
α

= xp

(
1 + o

(
x−β

t

))
.

Hence, we can write

x̂p

(
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M

n

)
=xp

(
1 + o

(
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t

))
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1 + log

(
t

p
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t
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n
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[wk (s) − 1

α

]2

+

[
M

n
− t
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p
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 .
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Rearrangement and premultiplication gives

√
M

log( M
np)

(
x̂p

xp
− 1

)
√

κ (k)
=

√
M

κ(k)

log
(

M
np

) {(log

(
t

p

)
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(
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p
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t

))
(

wk (s) − 1

α

)
+

1

α

[
M

nt
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t
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− 1

]
+ o

(
x−β

t

)
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[wk (s) − 1

α

]2

+

[
M

n
− t

1 + bx−β
p

1 + bx−β
t

]2
 .

Take xt = s̄n and let n → ∞. Moreover, by assumption npn → τ , τ ≥ 0 a constant.
Recall that Ms̄α

n/an → 1 in p, and by definition t = 1 − F (xt) = 1 − F (s̄) ≈
a (s̄n)−α. Thus

plimn→∞
log

(
t
p

)
log

(
M
n

p

) = 1,

and

plimn→∞
log

(
1+bx−β

p

1+bx−β
t

)
log

(
M
np

) = 0.

It follows from Theorem 7 and Slutsky’s Theorem that

log t
p

+ log
1+bx−β

p

1+bx−β
t

log
(

M
np

) √
M
(
wk (s̄n) − 1

α

)√
κ (k)

D→N

(
−sign (b)√

2αβ
,

1

α2

)

in distribution. The statement of the theorem now follows if the other terms
can be shown to converge to zero in probability. Also note that this part of the
proof shows that the properties of the quantile estimators are driven solely by the
properties of the tail estimator.

From the above assumptions and choice for xt it readily follows that

1

α

[
M

nt

1 + bx−β
t

1 + bx−β
p

− 1

]
= Op

(
n

−β
α+2β

)
.

From (15) we know that √
M = Op

(
n

β
α+2β

)
.
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By assumption npn → τ, so that log
(

M
npn

)
diverges. Putting everything together

we find

plimn→∞

√
M

log( M
np)

1
α

[
M
nt

1+bx−β
t

1+bx−β
p

− 1
]

√
κ (k)

= 0.

By using the foregoing arguments the last two terms are readily shown to vanish
in probability. Finally, note that we may replace s̄n by ŝn on the basis of Theorem
11.
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Table 1: Simulation Results: Parameters

Distribution Parameter Mean s.e. RMSE True

Student t(1) 1/α 1.012 0.075 0.075 1.000
β/α 1.398 0.305 0.675 2.000
m/m 1.702 0.691 0.984 1.000

Student t(4) 1/α 0.286 0.054 0.064 0.250
β/α 0.600 0.165 0.193 0.500
m/m 2.702 1.982 2.610 1.000

Stable(1.4) 1/α 0.670 0.047 0.065 0.714
β/α 1.497 0.268 0.565 1.000
m/m 7.425 1.993 6.726 1.000

Stable(1.8) 1/α 0.392 0.040 0.168 0.556
β/α 1.226 0.204 0.304 1.000
m/m 21.708 6.492 21.698 1.000

Type II Extreme (1) 1/α 1.026 0.062 0.067 1.000
β/α 2.042 0.623 1.213 1.000
m/m 2.461 1.127 1.844 1.000

Type II Extreme (4) 1/α 0.257 0.016 0.017 0.250
β/α 2.043 0.623 1.214 1.000
m/m 2.462 1.127 1.844 1.000

Log Pareto (4) 1/α 0.302 0.020 0.055 0.250
β/α 2.068 0.702 2.183 0.000
m/m — — — —

Student t(3) SV(0.1,0.9) 1/α 0.360 0.060 0.066 0.333
β/α 0.705 0.181 0.185 0.667
m/m 2.484 1.627 2.200 1.000

MA(1,1) Student t(3) 1/α 0.313 0.077 0.079 0.333
β/α 0.664 0.239 0.239 0.667
m/m 5.994 5.061 7.103 1.000

GARCH(2.0)(0.05,0.8,0.2) 1/α 0.485 0.112 0.113 0.500
β/α 0.905 0.317 — —
m/m — — — —

GARCH(4.0)(0.05,0.6,0.2) 1/α 0.326 0.073 0.105 0.250
β/α 0.695 0.232 — —
m/m — — — —

The simulations consist of 250 replications with sample size 5,000. Estimation was performed by

searching over the minimum MSE (n) by varying n1 in steps of 300 from 800 up to 4, 200. For

each choice of n1 and n2 we drew 500 subsamples in the bootstrap procedure. For each value

we report the mean, standard error (s.e.), root mean squared error (RMSE), and the theoretical

value, where these values are known.
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Table 2: Simulation Results: Quantile Estimation

Distribution Predicted Sample

1/p True mean CV mean CV

Student t(1) 5, 000 1591.6 653.6 . 36 14180 5. 12
15, 000 4774.7 5320 . 47 — —

Student t(4) 5, 000 10.915 11.54 . 18 13.68 . 37
15, 000 14.450 15.97 . 23 — —

Stable(1.40) 5, 000 153.18 133.4 .47 435.2 1. 93
15, 000 335.57 282.8 . 32 — —

Stable(1.80) 5, 000 30.398 21.01 . 21 60.68 1. 20
15, 000 56.028 32.66 . 26 — —

Type II Extreme (1) 5, 000 5, 000 5562 . 33 20370 2. 39
15, 000 15, 000 17560 . 39 — —

Type II Extreme (4) 5, 000 8.409 8.547 .0 8 9.875 . 35
15, 000 11.067 11.35 .10 — —

Log Pareto (4) 5, 000 15.65 17.02 . 11 19.35 . 37
15, 000 21.09 23.76 . 13 — —

Student t(3) SV(0.1,0.9) 5, 000 17.598 18.63 . 21 24.9 . 57
15, 000 25.432 28.07 . 26 — —

MA Student t(3) 5, 000 22.452 22.3 . 26 25.52 . 87
15, 000 32.243 32.17 . 34 — —

GARCH(2.0)(.05,0.8,0.2) 5, 000 — 17.06 . 57 18.46 1. 01
15, 000 — 31.01 . 71 — —

GARCH(4.0)(.05,.6,.2) 5, 000 — 4.737 . 30 5.548 . 72
15, 000 — 6.941 . 37 —

These are results from the same simulations as in Table 1. The probability level 1/5, 000 corre-

sponds to the expected maximum, and 1/15, 000 is an out–of–sample forecast. The true quantiles

for a GARCH process are not known. We show the EVT forecast of the quantiles from (31) along

with the coefficient of variation (CV), i.e. s.e./mean. Finally, we show the average sample maxima

and its CV.
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Table 3: City and Firm Size

Firm size City size

number of observations 1,000 1,653
mean 72,633 0.47
standard error 14,177 0.83
max 189,058 9.92
min 1,162 0.100

EVT results
α̂ 2.1 2.0

β̂ 3.4 2.5

M̂ 32 59

LS results
α̂(n) 1.0 1.2

The city size data is all cities in Russia, UK, India, Japan, Brazil, US, China, with more that

100,000 inhabitants, in millions. The firm size data is the revenue of the Fortune 1000 firms from

the year 1999 in the US, in USD Billions. The least squares (LS) results are obtained by using all

observations in the sample.
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Table 4: Daily S&P 500 and Olsen DM/US 10 Minute forex. Lower Tail

S&P 500 10 minute DM/US

Observations First Last First Last
5,000 5,000 5,000 5,000

Annualized
mean −1.6% 11.4% 112.9% − 23.0%
s.e. 26.4% 16.2% 19.2% 12.8%

Skewness 0.09 −2.5 0.464 −0.0814
Kurtosis 8.143 55.0 7.886 17.190
Minimum −0.13 −0.23 −0.693 −0.655

1/α 0.24 0.35 0.301 0.374
(·, ·) (−.17,−.43) (−.29,−.45) (0.27, 0.32) (0.33, 0.40
β/α 1.7 2.3 1.60 1.760

x̂1/n −.124 −.099 −0.690 −0.668
(·, ·) (−.069,−.18) (−.058,−.14) (−0.62,−0.85) (−0.58,−0.91)
x̂1/3n −.161 −.143 −0.958 −1.01
(·, ·) (−.073,−.25) (−.72,−.21) (−. 86,−1. 17) (−. 88,−1. 4

The SP–500 dataset is daily returns from 1929/01/02 to 1946/07/03 and 1981/03/18 to

2000/12/30. The FX data was obtained from Olsen and Associates and contains 1.4 million

quotes on the USD–DM spot contract from October 1992 to September 1993. These quotes are

aggregated into 52,558 equally spaced 10 minute returns, and we use the first and last 5,000 obser-

vations. In addition to the various sample statistics, the table shows estimates of 1/α along with

the 95% confidence interval. The quantile forecasts, x̂, are for the expected maxima, probability

equal to 1/5, 000 and for an output sample probability 1/15, 000, along with a 95% confidence

interval.
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Figure 1: Log Size – Log Rank, 1000 Realizations from a t(1.5)
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This is a plot of log size vs. log rank for 1000 relations of a Student t(1.5) distribution. The two
regression lines are estimated by using 50 and 250 observations.
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Figure 2: Log Size – Log Rank Cities
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This is a plot of log size vs. log rank for the cities. The two regression lines are estimated with
the tail observations only as well as using all observations.
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Figure 3: Impact of Tail Threshold on the Tail Index for City Sizes
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The x axis show the number of observations in the tail, mn, which ranges from 15 to 1652, i.e.
very few observations in the tail to almost all observations in the tail. The y axis show the
estimated tail index for the city size data. In the absence of a procedure for determining mn, we
have estimates of α which range from 0.98 to 2.24.
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Figure 4: Log size – Log Rank Fortune 1000
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This is a plot of log size vs. log rank for the US Fortune 1000 largest firms, ranked by revenue.
The three regression lines are estimated with the tail observations only as well as using all
observations.
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Figure 5: Log size – Log Rank SP–500 Index
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This is a plot of log size vs. log rank for 5000 observations of the SP-500 from 1981-03-18 to
2000-12-30. The optimal estimate of the tail index α(s∗) = 2.86 along with the α(1%) = 2.29
and α(0.5%) = 2.05.

42



References

Akgiray, V., Booth, C., and Seifert, B. (1988). Distribution properties of Latin
American black market exchange rates. Journal of International Money and
Finance, 71:37–48.

Champernowne, D. G. (1953). A model of income distribution. The Economic
Journal, 63, 250:318–351.

Chernozhukov, V. and Umantsev, L. (2001). Conditional value-at-risk: Aspects of
modeling and estimation. MIT Dept. of Economics Working Paper No. 01-19,
www.mit.edu/people/vchern.

Chung, K. and Cox, A. (1994). A stochastic model of superstardom: An application
of the Yule distribution. Review of Economic Studies, pages 771–775.
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