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1 Introduction

To what extent do �nancial conditions �uctuate due to �uctuations in lever-

age? The �leverage e¤ect�discussed by Black (1976) and Schwert (1989) is

well known, but �uctuating leverage has received renewed attention in the

aftermath of the �nancial crisis, with the focus being on the impact of �uc-

tuating leverage on the capacity of banks to bear risks. Our contribution is

to bring these two themes together into a uni�ed treatment of leverage and

volatility.

Leverage is procyclical for banks and other �nancial intermediaries - that

is, leverage is high during booms and low during busts. Two strands of the

recent literature have highlighted the link between procyclical leverage and

�nancial stability. The �rst concerns endogenous determination of leverage

when assets serve as collateral. Geanakoplos (1997, 2009) and Fostel and

Geanakoplos (2008, 2012) have popularized the general equilibrium frame-

work where assets serve as collateral, in which the risk bearing capacity of the

�nancial system can be severely diminished following shocks to fundamentals.

The second relevant strand of the literature on leverage is the impact of

procyclical leverage on systemic risk. Gorton (2007, 2009) and Gorton and

Metrick (2010) have explored the analogy between classical bank runs where

depositors withdraw their funds from conventional banks and the modern run

in capital markets with securitized claims where runs are driven by the in-

creased collateral requirements (increased �haircuts�) and hence the reduced

capacity to borrow.

Much of the recent literature has focused on the �nancial crisis, and less

attention has been given to the link between leverage and volatility, even

though the study of volatility has been central to discussions of leverage

since the initial Black (1976) and Schwert (1989) contributions.

Our contribution is to complete the circle between leverage and volatility

by endogenizing the procyclicality of leverage. Leverage and volatility are

intimately linked, as the capacity of intermediaries to take on risk exposures
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Barclays: 2 year change in assets, equity, debt
and risk­weighted assets (1992 ­2010)
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Figure 1: Scatter chart of relationship between the two year change in total assets
of Barclays against two-year changes in debt, equity and risk-weighted assets (Source:
Bankscope)

depends on the volatility of asset returns. However, equilibrium volatility is

an endogenous variable and depends on the ability of intermediaries to take

on risky exposures. So, we have a circularity. Solving for equilibrium entails

solving simultaneously for volatility, risk premia and balance sheet capacity.

The circularity between procyclical leverage and volatility is encapsulated

in Figure 1, which shows the scatter chart of the two-year changes in debt,

equity and risk-weighted assets to changes in total assets of Barclays. The

pattern in Figure 1 is typical of banks across countries and across business

sectors.1 More precisely, Figure 1 plots f(�At;�Et)g, f(�At;�Dt)g and
f(�At;�RWAt)g where �At is the two-year change in assets measured an-
nually, and where �Et, �Dt and �RWAt are the two-year changes in equity,

debt, and risk-weighted assets, respectively.

The �tted line through f(�At;�Dt)g has slope very close to 1, suggesting
that assets expand or contract dollar for dollar (or pound for pound) through

1See Adrian and Shin (2010, 2011) and Adrian, Colla and Shin (2012).
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a change in debt. What is especially notable is how the risk-weighted assets

of the bank barely change, even as the raw assets change by large amounts.

The fact that risk-weighted assets barely increase even as raw assets are

increasing rapidly attests to the lowering of measured risks during upswings.

However, the causation in the reverse direction will also be operating �that

is, the compression of volatility is induced by the increase in credit supply.

With such two-way causation, we need to solve for the equilibrium that fully

encompasses the circularity between volatility and leverage.

Leverage is procyclical in Figure 1, as asset changes are driven by changes

in debt, not equity. It is important to note that the leverage in Figure 1 is

measured with respect to book equity - i.e. equity as implied by the bank�s

portfolio. Book equity is analogous to the haircut in a securitized borrowing

transaction. In this sense, the procyclicality of leverage is another re�ection

of haircuts on collateral increasing in market downturns.

An alternative measure of equity would have been the bank�s market

capitalization, which gives the market price of its traded shares. However,

since our interest is in the portfolio decision of the bank, book equity is the

appropriate notion of equity for our purpose. It is important to remember

that market capitalization is not the same as the marked-to-market value

of the book equity in this context. Market capitalization re�ects market

discount rates for future cash �ows, as well as the snapshot value of the

bank�s portfolio.

In this paper, we construct a dynamic banking model where the banking

sector consists of risk-neutral banks that are subject to a Value-at-Risk (VaR)

constraint that requires them to maintain a capital cushion that limits their

probability of insolvency at all times to some known constant. We solve for

the equilibrium in closed form and examine how bank lending, volatility and

risk premia are jointly determined.

Our model and its solution have a number of attractive features. First, we

are able to solve our model in closed form, where equilibrium volatility, risk
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premia and leverage can all be solved as functions of a single state variable

�, with

� =
Size of long-only sector

Banking sector equity
(1)

where the numerator is some constant times the holding of the risky asset

by the non-bank sector. The denominator is the aggregate capital of the

banking sector as a whole. In terms of our state variable �, the equilibrium

volatility � (�) takes the particularly simple form:

� (�) =

�
fundamental

volatility

�
� � exp f��g � F (�) (2)

where �fundamental volatility�refers to the volatility due to the exogenous

shocks to the economy, and the function F (�) ensures that in the limiting

case without a banking sector (i.e. as � ! 1), the equilibrium volatility

converges to the fundamental volatility. Thus, the shape of the volatility

function � (�) is driven by the term � exp f��g. In particular, we show

that there is a cut-o¤ value of � above which equilibrium volatility exceeds

the fundamental volatility, but below which equilibrium volatility is below

fundamental volatility. In equilibrium, aggregate bank leverage is inversely

proportional to equilibrium volatility. In this way, we capture the notion that

volatility is high and leverage low when bank capital is depleted, and thereby

provide the link with Black (1976) and Schwert (1989), who �rst documented

the empirical feature that declining asset prices lead to increased volatility.

The second attractive feature of our framework is that it is �exible enough

to extend the analysis to the multi-asset setting. In the multi-asset version of

our model, closed form solutions for volatilities, correlations and leverage are

still available for some special cases. Leverage exhibits the same procyclical

features as in the one dimensional case. We show that correlations in returns

emerge endogenously even though the fundamentals driving the asset returns

are independent, and that the correlation can be characterized quite cleanly

in terms of the fundamentals. Indeed, the closed form solution is su¢ ciently
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compact that we can address more applied topics such as derivatives pricing

and the shape of the volatility curve. Kim and Kon (1994), Tauchen, Zhang

and Liu (1996) and Anderson, Bollerslev, Diebold and Ebens (2001) �nd that

the leverage e¤ect is stronger for stock indices than for individual securities.

Our framework provides a compact explanation of the phenomenon.

Our paper adds to recent work where balance sheet constraints enter as

a channel of contagion. Ampli�cation through wealth e¤ects was studied

by Xiong (2001) who showed that shocks to arbitrageur wealth can amplify

volatility when the arbitrageurs react to price changes by rebalancing their

portfolios. However, Xiong (2001) assumes portfolio investors with log pref-

erences, which leads to leverage that is countercyclical - that is, leverage is

high during busts and low during booms. Log preferences have also been im-

portant in more recent contributions, such as He and Krishnamurthy (2010,

2012) and Brunnermeier and Sannikov (2010, 2011). Given the importance

of procyclical leverage in the portfolio chosen by banks and other intermedi-

aries, we take a di¤erent tack in this paper.

The spirit of our equilibrium construction is closer to the recent paper by

Adrian and Boyarchenko (2012), who model the procyclical �uctuations in

leverage through risk constraints. The paper by Adrian and Boyarchenko

(2012) as well as ours hark back to an earlier strand of the literature on La-

grange multiplier associated with Value-at-risk constraints. An earlier paper

of ours (Danielsson, Shin and Zigrand (2004)) had backward-looking learning

rather than solving for equilibrium in a rational expectations model. Brun-

nermeier and Pedersen (2009) and Oehmke (2008) have explored the con-

sequences of �uctuating Lagrange multipliers associated with balance sheet

constraints, but without solving for the �xed point problem.

Relative to these earlier papers, our contribution is to solve for the equi-

librium returns, volatility, correlations and leverage in closed form, and to

show how the simplicity of the solution allows the multiple asset extension.

The tractability a¤orded by our closed-form solution is instrumental in de-
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riving several of the insights in our paper, and opens up a number of useful

avenues to link the banking literature with insights from asset pricing.

We begin with a general statement of the problem and introduce our

closed-form solution. We then extend the analysis to the general multi-

asset case where co-movements can be explicitly studied. We conclude by

outlining some implications of our analysis for the analysis of �nancial crises

and for macroeconomics more generally.

2 The Model

Our model describes the interactions between two groups of investors - pas-

sive investors and active investors. The passive investors can be thought of

as value investors such as households, pension funds and mutual funds, while

the active investors can be interpreted as banks and other intermediaries.

The risky securities can be interpreted as loans granted to ultimate bor-

rowers, but where there is a risk that the borrowers do not fully repay the

loan. Figure 2 depicts the relationships. Under this interpretation, the mar-

ket value of the risky securities can be thought of as the marked-to-market

value of loans granted to the ultimate borrowers. The value investors�hold-

ing of the risky security can be interpreted as the credit that is granted

directly by the household sector (through the holding of corporate bonds,

for example), while the holding of the risky securities by the active investors

can be given the interpretation of intermediated credit through the banking

sector.

Let time be indexed by t 2 [0;1). There are N > 0 non-dividend paying

risky assets as well as a risk-free bond We will focus later on the case where

N = 1, but we state the problem for the general N asset case. The price of

the ith risky asset at date t is denoted P it . We will look for an equilibrium

in which the price processes for the risky assets follow:

dP it
P it

= �itdt+ �
i
tdWt ; i = 1; : : : ; N (3)
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Figure 2: Intermediated and Directly Granted Credit

where Wt is an N � 1 vector of independent Brownian motions, and where
the scalar �it and the 1�N vector �it are as yet undetermined processes that

will be solved in equilibrium. The risk-free bond has price Bt at date t, which

is given by B0 = 1 and dBt = rBtdt, where r is constant.

2.1 Portfolio Choice of Banks

The banks (the �nancial intermediaries, or �FIs�) have short horizons and

maximize the instantaneous expected returns on their loan portfolio subject

to a Value-at-Risk constraint where its capital V is required to be su¢ ciently

large to cover Value-at-Risk. We use �capital�and �equity�interchangeably

in what follows.

We do not provide microfoundations for the VaR rule here,2 but cap-

ital budgeting practices based on measured risks (such as VaR) are well-

established among banks, and we adopt it here as a key feature of our model.

The short-horizon nature of our model is admittedly stark, but can be seen

as re�ecting the same types of frictions that give rise to the use of con-

2See Adrian and Shin (2011) for one possible microfoundation in a contracting model
with moral hazard, and Danielsson and Zigrand (2008) for a forward looking general
equilibrium model with production where a VaR constraint reduces the probability of a
systemic event caused by a free-riding externality during the re�nancing stage.
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straints such as VaR, and other commonly observed institutional features

among banks and other large �nancial institutions. Finally, note that we

have denoted the bank�s capital as V without a subscript for the bank, as it

will turn out that there is a natural aggregate result where only the aggregate

banking sector capital matters for equilibrium, rather than the distribution

of bank capital.

Let ait be the number of units of the ith risky asset held at date t, and

denote the dollar amount invested in risky security i by

Di
t := a

i
tP

i
t (4)

The budget constraint of the trader is

btBt = Vt � a>t Pt = Vt �
NX
i=1

Di
t (5)

where Vt is the trader�s capital and where x> is the transpose of x. The

dynamic budget constraint governs the evolution of capitalas follows:

dVt = a
>
t dPt + btdBt

=
�
rVt +D

>
t (�t � r)

�
dt+D>

t �tdWt (6)

where D> denotes the transpose of D, and where �t is the N �N di¤usion

matrix, row i of which is �it. In (6), we have abused notation slightly by

writing r = (r; : : : ; r) in order to reduce notational clutter. The context

should make it clear where r is the scalar or the vector.

From (6), the expected capital gain is

Et[dVt] = [rVt +D
>
t (�t � r)]dt (7)

and the variance of the trader�s equity is

Vart(dVt) = D>
t �t�

>
t Dtdt (8)

We denote the variance-covariance matrix of instantaneous returns as �t :=

�t�
>
t . The bank is risk-neutral, and maximizes return (7) subject to its
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Value-at-Risk constraint, which can be written as some positive constant �

times the forward-looking standard deviation of returns on the bank�s equity.

We take the bank�s equity Vt as the state variable . Assuming that the bank

is solvent (i.e. Vt > 0), the bank�s maximization problem can be written as3:

max
Dt

rVt +D
>
t (�t � r) subject to �

q
D>
t �t�

>
t Dt � Vt (9)

Once the dollar values fDi
tgNi=1 of the risky assets are determined, the

bank�s value of debt is determined by the balance sheet identity:

btBt = Vt �
X

i
Di
t (10)

The �rst-order condition for the optimal D is

�t � r = �(D>
t �tDt)

�1=2
t�tDt (11)

where 
t is the Lagrange multiplier associated with the VaR constraint.

Hence,

Dt =
1

�(D>
t �tDt)�1=2
t

��1t (�t � r) (12)

When �t 6= r, as will occur in equilibrium, the objective function is

monotonic in Dt by risk-neutrality, and the constraint must bind. Hence,

Vt = �
q
D>
t �tDt (13)

and therefore

Dt =
Vt
�2
t

��1t (�t � r) (14)

Notice that the optimal portfolio is similar to the mean-variance optimal

portfolio allocation, where the Lagrange multiplier 
t appears in the denom-

inator, just like a risk-aversion coe¢ cient. We thus have a foretaste of the

3In Appendix A, we show more rigorously why the Value-at-Risk of the bank can
be written as � times the instantaneous standard deviation of the return on equity,p
D>
t �t�

>
t Dt.
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main theme of the paper - namely, that the banks in our model are risk-

neutral, but they will behave like risk averse investors whose risk aversion

appears to shift in line with the Lagrange multiplier 
. Substituting into

(13) and rearranging we have


t =

p
�t
�

(15)

where

�t := (�t � r)>��1t (�t � r) � 0 (16)

The Lagrange multiplier 
t for the VaR constraint is thus proportional

to the generalized Sharpe ratio
p
� for the risky assets in the economy. Al-

though traders are risk-neutral, the VaR constraint makes them act as if they

were risk-averse with a coe¢ cient of relative risk-aversion of �2
t = �
p
�t.

As � becomes small, the VaR constraint binds less and banks�willingness to

take on risk increases.

Notice that the Lagrange multiplier 
t does not depend directly on equity

Vt. Intuitively, an additional unit of capital relaxes the VaR constraint by

a multiple � of standard deviation, leading to an increase in the expected

return equal to a multiple � of the generalized Sharpe ratio, i.e. the risk-

premium on the portfolio per unit of standard deviation. This should not

depend on Vt directly, and indeed we can verify this fact from (16).

Finally, we can solve for the risky asset holdings as

Dt =
Vt

�
p
�t
��1t (�t � r) (17)

The optimal holding of risky assets is homogeneous of degree one in equity Vt.

This simpli�es our analysis greatly, and allows us to solve for a closed form

solution for the equilibrium. Also, the fact that the Lagrange multiplier

depends only on market-wide features and not on individual capital levels

simpli�es our task of aggregation across traders and allows us to view demand

(17) without loss of generality as the aggregate demand by the FI sector with

aggregate capital of Vt.
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2.2 Closing the Model with Value Investors

We close the model by introducing value investors who supply downward-

sloping demand curves for the risky assets. The slope of the value investors�

demand curves will determine the size of the price feedback e¤ect. Sup-

pose that the value investors in aggregate have the following vector-valued

exogenous demand schedule for the risky assets, yt = (y1t ; : : : ; y
N
t ) where

yt = �
�1
t

264 �1 (z1t � lnP 1t )
...

�N
�
zNt � lnPNt

�
375 (18)

where P it is the market price for risky asset i and where dz
i
t is a (favorable)

Itô demand shock to the demand of asset i (or a unfavorable supply shock to

security i) to be speci�ed further. Each demand curve can be viewed as a

downward sloping demand hit by demand shocks, with �i being a scaling pa-

rameter that determines the slope of the demand curve. The particular form

adopted for these exogenous demands is to aid tractability of the equilibrium

pricing function, as we will see shortly. We can interpret these demands as

coming from risk averse value investors who wish to hold a portfolio of the

risky securities where their holding depends on the expected upside return,

ln(P �it =P
i
t ), relative to the private values or benchmark prices P

�i
t which are

given by ez
i
t (i.e. benchmark prices P �it correspond to the equilibrium prices

that would obtain in a fundamental economy without a �nancial sector).

The coe¢ cients � play the role of risk tolerance parameters.

Bringing together the demands of the banks and the value investors, the

market-clearing condition Dt + yt = 0 can be written as

Vt

�
p
�t
(�t � r) +

264 �1 (z1t � lnP 1t )
...

�N
�
zNt � lnPNt

�
375 = 0 (19)
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Equilibrium prices are therefore

P it = exp

 
Vt

��i
p
�t
(�it � r) + zit

!
; i = 1; : : : ; N (20)

In solving for the rational expectations equilibrium (REE) of our model,

our strategy is to begin with some exogenous stochastic process that drives

the passive traders�demands for the risky assets (the fundamental �seeds�

of the model, so to speak), and then solve for the endogenously generated

stochastic process that governs the prices of the risky assets.

In particular, we will look for an equilibrium in which the price processes

for the risky assets are of the form:

dP it
P it

= �itdt+ �
i
tdWt ; i = 1; : : : ; N (21)

where Wt is an N � 1 vector of independent Brownian motions, and where
the scalar �it and 1 � N vector �it are as yet undetermined coe¢ cients that

will be solved in equilibrium. The �seeds�of uncertainty in the equilibrium

model are given by the demand shocks of the value investors:

dzit = r
�dt+ ��izdWt (22)

where �iz is a 1�N vector that governs which Brownian shocks will get im-

pounded into the demand shocks and therefore govern the correlation struc-

ture of the demand shocks. We assume that the stacked N �N matrix �z is

of full rank and that r� > r, so that demand shocks re�ect risk aversion of

the value investors.

Our focus is on the way that the (endogenous) di¤usion terms f�itg of the
return process depends on the (exogenous) shock terms f�izg, and how the ex-
ogenous noise terms may be ampli�ed in equilibrium via the risk constraints

of the active traders. Indeed, we will see that the relationship between the

two sets of di¤usions generate a rich set of empirical predictions.
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3 Equilibrium with Single Risky Asset

Before examining the general problem with N risky assets, we �rst solve the

case of with single risky asset. We will look for an equilibrium where the

price of the risky asset follows the process:

dPt
Pt

= �tdt+ �tdWt (23)

where �t and �t are, as yet, undetermined coe¢ cients to be solved in equi-

librium, and Wt is a standard scalar Brownian motion. The �seeds� of

uncertainty in the model are given by the exogenous demand shocks to the

value investors�demands:

dzt = r
�dt+ ��zdWt (24)

where �z > 0 and � > 0 are known constants. For the single risky asset

case, note that

�t =
(�t � r)

2

�2t
(25)

Substituting into (20), and con�ning our attention to regions where the

Sharpe ratio �t�r
�t

is strictly positive, we can write the price of the risky

asset as

Pt = exp

�
zt +

�tVt
��

�
(26)

From (23) we have, by hypothesis,

d lnPt =

�
�t �

1

2
�2t

�
dt+ �tdWt (27)

Meanwhile, taking the log of (26) and applying Itô�s Lemma gives

d lnPt = d

�
zt +

�tVt
��

�
= r�dt+ ��zdWt +

1

��
d(�tVt)

= r�dt+ ��zdWt +
1

��
(�tdVt + Vtd�t + dVtd�t) (28)
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Now use Itô�s Lemma on �(Vt):

d�t =
@�

@Vt
dVt +

1

2

@2�

@(Vt)2
(dVt)

2

=

(
@�

@Vt

�
rVt +

Vt(�t � r)
��t

�
+
1

2

@2�

@(Vt)2

�
Vt
�

�2)
dt+

@�

@Vt

Vt
�
dWt (29)

where (29) follows from

dVt = [rVt +Dt(�t � r)]dt+Dt�tdWt

=

�
rVt +

Vt(�t � r)
��t

�
dt+

Vt
�
dWt (30)

and the fact that Dt =
Vt
��t

due to the binding VaR constraint. De�ning the

aggregate (gross) bank leverage ratio by `t := Dt
Vt
, we see that `t = 1

��t
from

which the procyclical properties of ` follow once we have characterised the

equilibrium �.

Notice also that (dVt)2 =
�
Vt
�

�2
dt. We thus obtain di¤usion equations

for Vt and for �t itself.

Substituting back into (28) and regrouping all dt terms into a new drift

term:

d lnPt = (drift term) dt+
�
��z +

1

��

�
�t
Vt
�
+ Vt

@�t
@Vt

Vt
�

��
dWt (31)

We can solve for the equilibrium di¤usion �t by comparing coe¢ cients

between (31) and (27). We have an equation for the equilibrium di¤usion

given by:

�(Vt) = ��z +
1

��

�
�t
Vt
�
+ Vt

@�t
@Vt

Vt
�

�
(32)

which can be written as the ordinary di¤erential equation (ODE):

V 2t
@�

@Vt
= �2�(�t � ��z)� Vt�t (33)

It can be veri�ed by di¤erentiation that the generic solution to this ODE is

given by

�(Vt) =
1

Vt
e
��2�

Vt

"
c� �2���z

Z 1

��2�
Vt

e�u

u
du

#
(34)
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where c is a constant of integration.

We can set c = 0 through the following natural restriction in our model.

The only randomness in our economy stems from the shocks to the value

investor demands. If we let � ! 0, value investors�demand goes to zero and

we get the REE �(Vt) = c
Vt
. Since the limit economy should be non-random,

we require that returns also are riskless, �(Vt) = 0, implying that c = 0.

We thus obtain a unique closed form solution to the rational expectations

equilibrium for the single risky asset case. Setting c = 0 and simplifying, we

arrive at the following succinct closed form solution

�(Vt) = ��z
�2�

Vt
exp

�
��

2�

Vt

�
� Ei

�
�2�

Vt

�
(35)

where Ei (w) is the well-known4 exponential integral function:

Ei (w) � �
Z 1

�w

e�u

u
du (36)

The Ei (w) function is de�ned provided w 6= 0. The expression �2�=Vt which
appears prominently in the closed form solution (35) can be interpreted as

the relative scale or size of the value investor sector (parameter �) compared

to the banking sector (total capital Vt normalized by VaR).

To bring out the structure of the solution better, let � be the relative size

of the long-only sector relative to the banking sector by de�ning � as

�t �
�2�

Vt
(37)

Then, the closed form solution for equilibrium volatility can be written as a

function of �t as:

�(�t) = ��z�t exp f��tg � Ei (�t) (38)

The closed form solution also reveals much about the basic shape of the

volatility function � (�t). Consider the limiting case when the banking sector

4See http://mathworld.wolfram.com/ExponentialIntegral.html
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is very small, that is, �t ! 1. Although �t becomes large, the exponen-

tial term exp f��tg in (38) goes to zero much faster, and so the product
�t exp f��tg becomes small. However, since we have exogenous shocks to

the value investor demands, there should still be non-zero volatility at the

limit, given by the fundamental volatility ��z. The role of the exponential

integral term Ei (�t) is to ensure that the limiting volatility when the banking

sector becoms small is given by the volatility that would hold in the absence

of a banking sector.

The procyclical properties of leverage, being higher in good �meaning

well-capitalised �times and lower during bank crises then follow directly from

`t :=
Dt

Vt
=

1

��(�t)

The equilibrium risk premium in our model is given by the drift �t (the

expected instantaneous return on the risky asset) which can be solved in

closed form, and is given by

�t = r +
�t

2���z

�
2�(r� � r) + ��2t � ��z + (�t � ��z)

�
2�2r +

�2�

Vt
� 2
��
(39)

We can see that �t depends on the di¤usion �t, so that when the expression

in the square brackets is positive, �t is increasing in �t. Thus, even though

banks are risk-neutral, they are prevented by their VaR constraint from fully

exploiting all positive expected return opportunities. The larger is �t, the

tighter is the risk constraint, and hence the higher is the expected return �t.

Note that the expression in the square brackets is positive when Vt is small,

which is consistent with the VaR constraint binding more tightly.

Also, notice that as the VaR constraint becomes tighter, lim�!1 �t = ��z

and lim�!1 �(�t � ��z) = 0 so that in the limit we have �t �
(��z)2

2
= r�,

con�rming our interpretation of r� as the value investor sector�s benchmark

log-return.

The information contained in the risk premium �t and its relationship
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Figure 3: Risk Premium and Volatility as Functions of Bank Equity

with the di¤usion �t can be summarized alternatively in terms of the Sharpe

ratio, which can be written as

�t � r
�t

=
1

2���z

�
2�(r� � r) + ��2t � ��z + (�t � ��z)

�
2�2r +

�2�

Vt
� 2
��
(40)

The countercyclical shape of the Sharpe Ratio follows directly from the shape

of the di¤usion coe¢ cient �t.

3.1 Numerical Example

We illustrate the properties of our closed form solution by means of a nu-

merical example. Figure 3 plots the equilibrium di¤usion �t and the drift �t
as a function of the state variable Vt. The parameters chosen for this plot

were r = 0:01, r� = 0:047, � = 6, � = 2:7, �z = 0:3, � = 1:5

As suggested by the closed form solution (35), the plot of �t is non-

monotonic, with a peak when Vt is low. Also, note that when V = 0, we

have � = 0:45, which is the fundamental volatility given by the product of

�z and � (= 0:3� 1:5). This non-monotonic shape of the volatility function
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is completely general, and does not depend on the parameters chosen. We

provide further arguments in the appendix.5

What Figure 3 reveals is that the feedback e¤ect generating endogenous

volatility is strongest for low to intermediate values of Vt. This is so, since

there are two countervailing e¤ects. If Vt is very small - close to zero, say -

then there is very little impact of the banks�portfolio decision on the price

of the security since the VaR constraint restricts the banks�risky holdings

to be negligible. Therefore, both �t and �t are small. At the opposite

extreme, if Vt is very large, then banks begin to act more and more like an

unconstrained trader. Since the trader is risk�neutral, the expected drift �t
is pushed down to the risk�free rate, and the volatility �t declines.

However, at an intermediate level of Vt, the feedback e¤ect is maximized,

where a positive price shock leads to greater purchases, which raises prices

further, which leads to greater purchases, and so on. This feedback e¤ect

increases the equilibrium volatility �t. Due to the risk constraint, the risk-

neutral banks behave �as if�they were risk averse, and the equilibrium drift

�t re�ects this feature of the model. The risk premium �t rises with �t, since

5See Mele (2007) for a discussion of the stylized facts, and for a model generating
countercyclical statistics in a more standard framework.
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both risk and risk aversion increase as bank equity is depleted.

Indeed, as we have commented already, the Lagrange multiplier associated

with the risk constraint is the Sharpe ratio in this simple one asset context.

The closed-form expression for the Lagrangian is plotted in Figure 4. We

see that the Sharpe ratio rises and falls roughly the same pattern with �t and

�t. However, the notable feature of Figure 4 is that the Lagrange multiplier

may actually start increasing again when V is large. This is because the

Lagrange multiplier re�ects the bank�s return on equity (ROE), and ROE is

a¤ected by the degree of leverage taken on by the bank. When V becomes

large, the volatility falls so that bank leverage increases. What Figure 4

shows is that the increased leverage may start to come into play for large

values of V .

Figure 5 gives scatter charts for the relationship between the asset growth

and leverage for four sample realizations of the model. Each scatter chart for

a particular sample path is accompanied by the price series for that sample

path.�

The scatter charts reveal the characteristic clustering of dots around the

45-degree line, as shown by Adrian and Shin (2010) for the Wall Street in-

vestment banks. The notable feature from the scatter charts is how the slope

and degree of clustering depends on the price realizations. When the price

path is low, many of the observations are for the upward-sloping part of the

volatility function � (V ). Along the upward-sloping part, equity depletion

associated with price declines is accompanied by a decline in Value-at-Risk,

and hence an uptick in leverage. These observations are those below the

45-degree line, but where leverage goes up. However, when the realizations

are mainly those on the downward-sloping part of the volatility curve, the

scatter chart hugs more closely the 45-degree line. The second panel in

Figure 5 shows this best.
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Figure 5: Scatter Charts of Asset and Leverage Changes
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4 Equilibrium with Many Risky Assets

4.1 General Speci�cation

We now turn to the case with N > 1 risky assets and look for an equilibrium

in which the prices of risky assets follow:

dP it
P it

= �itdt+ �
i
tdWt (41)

where Wt is an N � 1 vector of independent Brownian motions, and where
�it and �

i
t are terms to be solved in equilibrium. The demand shocks of the

passive traders are given by

dzit = r
�dt+ ��izdWt (42)

where �iz is a 1 � N vector that governs which Brownian shocks a¤ect the

passive traders�demands.

We denote conjectured quantities with a tilde. For instance, conjectured

drift and di¤usion terms are ~�; ~� respectively and the actual drift and dif-

fusions are � and � respectively. For notational convenience, we de�ne the

scaled reward-to-risk factor

�t :=
1p
�t
��1t (�t � r) (43)

Also, we use the following shorthands:

�it :=
1p
�t
(�it � r) (44)

�it :=
1

�2�i
�it +

Vt

�2�i
@�it
@Vt

(45)

and where
@�it
@Vt

=
2

�2�i
@�it
@Vt

+
Vt

�2�i
@2�it
@V 2t
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Under some conditions to be veri�ed, we can compute the actual drift and

di¤usion terms of dP it =P
i
t as a function of the conjectured drift and di¤usion

terms. By Itô�s Lemma applied to (20) we have:

�it = ~�
i
tVt
~�
>
t ~�t + ��

i
z (46)

We denote the N�1 vector of ones by 1N , and the operator that replaces
the main diagonal of the identity matrix by the vector v by Diag(v). Also,

for simplicity we write r for r1N . Then we can stack the drifts into the vector

�t, the di¤usion coe¢ cients into a matrix �t, etc.

We can solve the �xed point problem by specifying a beliefs updating

process (~�; ~�) that when entered into the right hand side of the equation,

generates the true return dynamics. In other words, we solve the �xed point

problem by solving for self-ful�lling beliefs (~�t; ~�t) in the equation:�
~�t
~�t

�
=

�
�t(~�t; ~�t)
�t(~�t; ~�t)

�
: (47)

By stacking into a di¤usion matrix, at a REE the di¤usion matrix satis�es

�t = Vt�t�
>
t �t + ��z (48)

Using the fact that �>t �t�
>
t = �

>
t , �t satis�es the following matrix quadratic

equation �t�>t = ��z�
>
t + Vt�t�

>
t so that

(�t � ��z)�>t = Vt�t�>t (49)

The return di¤usion in equilibrium is equal to the fundamental di¤usion

��z �the one occurring with no active FIs in the market �perturbed by an

additional low-rank term that incorporates the rational equilibrium e¤ects of

the FIs on prices. Therefore, we have a decomposition of the di¤usion matrix

into that part which is due to the fundamentals of the economy, and the part

which is due to the endogenous ampli�cation that results from the actions of
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the active traders. The decomposition stems from relation (46) (keeping in

mind that Vt
�
�t�t equals the di¤usion term of equity)

�it =

�
1

��i
�it

�
| {z }

feedback e¤ect on vol

from VaR

(vol of capital) +

�
V

��i
@�it
@Vt

�
| {z }

feedback e¤ect on vol

from changing expectations

(vol of capital) + ��iz

We now solve for a representation of �t. Solutions to quadratic matrix

equations can rarely be guaranteed to exist, much less being guaranteed to

be computable in closed form. We provide a representation of the solution,

should a solution exist. This solution di¤usion matrix can be shown to be

nonsingular, guaranteeing endogenously complete markets by the second fun-

damental theorem of asset pricing.

Denote the scalar

et := 1� Vt�>t �t
It follows from the Sherman-Morrison theorem (Sherman andMorrison (1949))

that et = Det
�
I � Vt��>t

�
and that if (and only if) et 6= 0 (to be veri�ed in

equilibrium) we can represent the di¤usion matrix:

�t = �

�
Vt

1� Vt�>t �t
�t�

>
t + I

�
�z (50)

We then have the following result.

Proposition 1 The REE di¤usion matrix �t and the variance-covariance
matrix �t are non-singular, and

��1t =
1

�
��1z

�
I � Vt�t�>t

�
(51)

Proof. By the maintained assumption that �z is invertible, the lemma fol-
lows directly if we were able to show that

h
Vt
et
�t�

>
t + I

i
is invertible. From

the Sherman-Morrison theorem, this is true if 1+ Vt
et
�>t �t 6= 0, which simpli�es

to 1 6= 0. The expression for the inverse is the Sherman-Morrison formula.
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4.2 Closed Form Solution

To make further progress in the many asset case, we examine a special case

that allows us to solve for the equilibrium in closed form. The special case

allows us to reduce the dimensionality of the problem and utilize the ODE

solution from the single risky asset case. Our focus here is on the correlation

structure of the endogenous returns on the risky assets.

Assumption (Symmetry, S) The di¤usion matrix for z is �~�zIN where

~�z > 0 is a scalar and where IN is the N �N identity matrix. Also, �i = �

for all i.

The symmetry assumption enables us to solve the model in closed form

and examine the changes in correlation. Together with the i.i.d. feature of

the demand shocks we conjecture an REE where �it = �
1
t , �

i
t = �

1
t , �

i
t = �

1
t ,

�it = �
1
t , �

ii
t = �

11
t and �ijt = �

12
t , i 6= j. First, notice that �t�>t = �1t�1t11>,

and that �>t �t = N�1t�
1
t , where 1 is a N � 1 vector of ones (so that 11> is

the N �N matrix with the number 1 everywhere).

From (50) we see that the di¤usion matrix is given by

��z

�
Vt�

1
t �
1
t

1�NVt�1t �1t
11> + I

�
(52)

From here the bene�t of symmetry becomes clear. At an REE we only

need to solve for one di¤usion variable, �iit = �
11
t , since for i 6= j the cross

e¤ects �ijt = �12t = �11t � �~�z are then determined as well. Recall that �
ij
t

is the measure of the e¤ect of a change in the demand shock of the jth

security on the price of the ith security, and not the covariance. In other

words, it governs the comovements between securities that would otherwise

be independent. De�ne by xt � x(Vt) the solution to the ODE (33) with �
replaced by �

N
, i.e. xt is equal to the right-hand-side of (35) with � replaced

by �
N
. The proof of the following proposition is in the appendix.

Proposition 2 Assume (S). The following is an REE.
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The REE di¤usion coe¢ cients are �iit = xt+
N�1
N
�~�z, and for i 6= j, �ijt =

xt� 1
N
�~�z. Also, �iit = Vart(return on security i) = �

2~�2z+
1
N

�
N2x2t � �2~�2z

�
,

and for i 6= j, �ijt = Covt(return on security i; return on security j) =
1
N

�
N2x2t � �2~�2z

�
and Corrt(return on security i; return on security j) =

Nx2t� 1
N
�2~�2z

Nx2t+
N�1
N

�2~�2z
.

Risky holdings areDi
t =

Vt
�N3=2xt

. The gross leverage ratio is `t :=
PN
i=1D

i
t

Vt
=

1
�xt

p
N
.

The risk-reward relationship is given by

�it � r
xt

=
1

2� �
N
~�z

�
2�(r� � r) + �

�
Nx2t + �

2~�2z
N � 1
N

�
� �p

N
~�z+

p
N
�
xt �

�

N
~�z

��
2�2r +

�2�

Vt
� 2
��

(53)

The intuition and form of the drift term is very similar to the N = 1 case

and reduces to it if N is set equal to 1. Similarly, the leverage ratio remains

procyclical and behaves like in the N = 1 case.

With multiple securities and with active banks, each idiosyncratic shock

is transmitted through the system through the banks� portfolio decisions.

This can be seen also from the fact that price i can be written as P it =

exp (R(�t) + z
i
t), with z

i
t the idiosyncratic shock and R(�t) :=

��(�t)

�t
p
N
the ag-

gregate shock. On the one hand this means that less than the full impact of

the shock on security i will be transmitted into the asset return i, potentially

leading to a less volatile return. The reason is that a smaller fraction of

the asset portfolio is invested in asset i, reducing the extent of the feedback

e¤ect. On the other hand, the demand shocks to assets other than i will be

impounded into return i, potentially leading to a more volatile return, de-

pending on the extent of mutual cancellations due to the diversi�cation e¤ect

on the FIs�equity. In a world with multiple risky securities satisfying the

assumptions in the proposition, the extent of contagion across securities is

given by �ijt = xt� 1
N
�~�z, for i 6= j. In the absence of FIs, xt = x(0) = 1

N
�~�z,

so any given security return is una¤ected by the idiosyncratic shocks hitting
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other securities.

For comparison purposes, denote the scalar di¤usion coe¢ cient from the

N = 1 case, as given by (34), by �N=1t . The �rst direct e¤ect can be char-

acterized as follows: �11t < �N=1t i¤ �~�z < �N=1t . In words, each security

return is a¤ected less by its own noise term than in a setting with only

this one security, for small levels of capital. The reason for this latter e¤ect

lies in the fact that any given amount of FI capital needs to be allocated

across multiple securities now. For capital levels larger than the critical level

V � : �N=1t (V �) = �~�z, the direct e¤ect is larger than in the N = 1 economy6

because the (now less constrained) risk-neutral FIs tend to absorb aggregate

return risk as opposed to idiosyncratic return risk. Whereas all uncertainty

vanishes in the N = 1 case since FIs insure the residual demand when cap-

ital becomes plentiful (limV!1 �
N=1
t = 0), with N > 1 on the other hand

individual volatility remains (limV!1�
11
t =

N�1
N
�2~�2z > 0) but the fact that

correlations tend to �1 means that limV!1Var(return on the equilibrium

portfolio)= 0. So again as FI capital increases, aggregate equilibrium return

uncertainty is washed out, even though returns continue to have idiosyncratic

noise.

Combining direct and indirect e¤ects, return variance is lower in the multi

security case if V is small: �11t < (�N=1t )2 i¤ �2~�2z=N
2 < x2t . Still, as in the

N = 1 case securities returns are more volatile with active banks (Vt > 0),

provided capital is not too large.

Diversi�cation across the N i.i.d. demand shocks lessens the feedback

e¤ect on prices to some extent. Since the VaR constraints bind hard for

small levels of capital, the fact that idiosyncratic shocks are mixed and a¤ect

all securities implies that asset returns become more correlated for small

capital levels. FIs tend to raise covariances by allowing the i.i.d. shocks that

a¤ect security i to be also a¤ecting security j 6= i through their portfolio

choices. This e¤ect has some similarities to the wealth e¤ect on portfolio

6For instance, as V !1, we have limV!1 �
11
t = N�1

N �~�z > 0 = limV!1 �
N=1
t .
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choice described by Kyle and Xiong (2001). The intuition is as follows.

Without FIs, returns on all securities are independent. With a binding VaR

constraint, in the face of losses, FIs� risk appetite decreases and they are

forced to scale down the risk they have on their books. This leads to joint

downward pressure on all risky securities.

This e¤ect is indeed con�rmed in an REE, leading to positively correlated

returns. This e¤ect is consistent with anecdotal evidence on the loss of

diversi�cation bene�ts su¤ered by hedge funds and other traders who rely on

correlation patterns, when traders are hit by market shocks. The argument

also works in reverse: as FIs start from a tiny capital basis that does not

allow them to be much of a player and accumulate more capital, they are

eager to purchase high Sharpe ratio securities. This joint buying tends to

raise prices in tandem.

Figure 7 shows the correlation as a function of V . As can be seen on

Figure 7, variances move together, and so do variances with correlations.

This echoes the �ndings in Andersen et al (2001) who show that

�there is a systematic tendency for the variances to move to-

gether, and for the correlations among the di¤erent stocks to

be high/low when the variances for the underlying stocks are

high/low, and when the correlations among the other stocks are

also high/low.�

They conjecture that these co-movements occur in a manner broadly con-

sistent with a latent factor structure (the x process in our model).

5 Further Results

The logic of the feedback e¤ects that underlies the shapes of the volatility,

risk premia and Sharpe Ratio graphs naturally has a number of powerful

corollaries that tie in with empirical regularities in the �nancial markets.
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5.1 Leverage E¤ect

The �leverage e¤ect�refers to the empirical regularity noted by Black (1976)

and Schwert (1989) that declining asset prices lead to increased future volatil-

ity. Recent work by Kim and Kon (1994), Tauchen, Zhang and Liu (1996)

and Anderson, Bollerslev, Diebold and Ebens (2001) �nd that the leverage

e¤ect is stronger for indices than for individual securities. This has been

considered as a puzzle for a literal interpretation of the leverage e¤ect, and

we are not aware of theoretical explanations for this asymmetry. Our model

also �nds that the overall market volatility reacts more to falls than individ-

ual securities, and our story provides a natural intuition for the e¤ect. As

equity V is reduced, prices fall and volatilities increase. Since correlations

also increase as equity falls, the volatility of the market portfolio increases

more than the volatility of the individual securities underlying the market

portfolio. De�ne ~V so that @xt
@Vt
( ~V ) = 0, meaning that the region where eq-

uity satis�es V > ~V corresponds to the usual region right of the hump where

capital losses lead to more volatile returns.

Proposition 3 Assume N > 1. A decrease in V raises the volatility of the

market more than it raises the volatility of an individual constituent security

i¤ Vt > ~V .

Proof. In our model it can easily be veri�ed that the variance of the market
portfolio is equal to �mt := Nx2t , and that �

ii
t = Nx2t +

N�1
N
�2~�2z. A few

manipulations verify

@
p
�mt
@V

� @
p
�iit

@V
= Nxt

@xt
@V

"
1p
�mt

� 1p
�iit

#
< 0

i¤ Vt > ~V , since �mt < �
ii
t if N > 1.

5.2 Derivatives Pricing Implications

It is well known that the Black-Scholes-Merton implied volatilities exhibit a

negative skew in moneyness K=S that is fading with longer time to maturity
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(see for instance Aït-Sahalia and Lo (1998) for a formal econometric analysis).

The usual intuition for the relative over-pricing of out-of-the-money (OTM)

puts compared to OTM calls within the Black-Scholes-Merton model relies

on the fact that OTM puts o¤er valuable protection against downside �pain

points,�and that such a downside either is expected to occur more frequently

than similar upside movements or at least occurs in more volatile environ-

ments than would a similar upside movement, or that investors are willing to

pay more to protect the downside compared to Black-Scholes. These e¤ects

imply a fatter left tail of the risk-neutral returns distribution compared to

the Gaussian Black-Scholes model, as can be veri�ed on Figure 8.

While a judicious choice of parameters allows stochastic volatility and

local volatility models to generate implied volatility surfaces that exhibit the

observed stylised facts, these models are mere representations and do not

provide a rationale for the resulting skew surfaces. Our model provides a

simple micro-founded channel through which the observed volatility skew is

generated. In our framework the REE volatility function j�tj largely depends
negatively on bank capital Vt (except for very small values of Vt). Capital

being random, volatility is stochastic. Since the value of the underlying risky
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Figure 9: Implied Volatility Surface

asset (viewed as the overall market index) depends positively on bank capital

over a large range of capital levels, but its volatility depends mostly negatively

on bank capital, one can expect that the option generated implied volatility

skew appears in equilibrium. Indeed, the Radon-Nikodym derivative dQ
dP :=

exp

�
�1
2

R T
0

�
�t�r
�t

�2
dt�

R T
0

�t�r
�t
dWt

�
allocates more mass to the left tail

with the model�s countercyclical market price of risk process �t�r
�t

than with

a constant market price of risk process, thereby generating the skew.

Figure 9 gives the implied volatility surface arising from our model in

(K=S; maturity) space. We see the skew for each maturity, as well as a

�attening over longer maturities. The �attening is due to the fact that over

a longer horizon bank equity will more likely than not have drifted upwards

and further out of the danger zone.

Our simple speci�cation not only characterises the shape of the IV surface,

it also provides predictions as to the dynamic evolution of these surfaces over

the cycle. If one focuses on the at-the-money (ATM, moneyness of one) across

various capital levels, one sees that the ATM implied vols (which would in this
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model be equivalent to the VIX index or similar) are counter-cyclical. An

economy with higher capital levels has a lower VIX, and worsening economic

circumstances lead to a higher VIX. This is a well-established empirical fact,

so much so that the VIX is also referred to as the �investor fear gauge.�

6 Concluding Remarks

The �nancial crisis of 2007-9 has served as a reminder of the important

role played by the �uctuations in the leverage of banks and other �nancial

intermediaries in driving �nancial conditions. Our contribution has been to

provide a uni�ed framework that links the procyclical nature of leverage with

the classical literature on the volatility of market outcomes and the �leverage

e¤ect�of Black (1976) and Schwert (1989).

The work of Gorton (2007, 2009) and Geanakoplos (2010, 2011) has

brought home to researchers and policy makers the importance of under-

standing the �uctuations in leverage in driving �nancial conditions and macro-

economic conditions more generally. For instance, Geanakoplos (2010, 2011)

shows how thinking about haircuts pushes us to inquire into the leverage on

the new, marginal loan when considering �nancial conditions, rather than

the leverage on the existing book of assets. As such, �nancial conditions can

be seen to have begun deteriorating in late 2006 and early 2007, even though

leverage measured on aggregate assets remained high until 2009.

The procyclicality of leverage distinguishes our paper from most of the

existing literature on �nancial shock ampli�cations that assume log prefer-

ences of investors. Log preferences imply that leverage is countercyclical -

that is, leverage is high during busts, and low during booms. To the extent

that our focus is on the investor�s portfolio decision, the leverage should be

measured with respect to the equity that is implied by the investor�s portfo-

lio. Hence, book equity is the appropriate notion when measuring leverage

embedded in portfolio choice, not market capitalization. Thus, obtaining
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procyclical leverage should be a feature that researchers should have at the

top of their list as a modeling objective. Procyclicality of leverage is sim-

ply the re�ection of haircuts rising when market conditions deteriorate, as

emphasized by Gorton (2007, 2009) and Gorton and Metrick (2010).

Procyclicality of leverage also distinguishes our paper from the ��nancial

frictions�literature in macroeconomics that posits a �xed haircut, and hence

a �xed leverage constraint which transmits shocks purely through shocks

to net worth, rather than changes in leverage. Adrian, Colla and Shin

(2012) argue that understanding the �uctuations in leverage has important

consequences for modeling macroeconomic �uctuations.

Our objective has been to bring the recent discussion on �nancial crises

back to the classical literature on volatility and the �leverage e¤ect�. Com-

paratively little attention has been given to the link between leverage and

volatility in the �nancial crisis literature, even though the study of volatility

has been central to discussions of leverage since the initial Black (1976) and

Schwert (1989) contributions.

Our contribution has been to complete the circle between leverage and

volatility by endogenizing the procyclicality of leverage. As we have seen,

leverage and volatility are intimately linked, as the capacity of intermedi-

aries to take on risk exposures depends on the volatility of asset returns.

At the same time, equilibrium volatility is an endogenous variable and de-

pends on the ability of intermediaries to take on risky exposures. We have

addressed this circularity. Our contribution has been to address this cir-

cularity in a simple, closed-form solution with applications in a variety of

areas. The issues of policy responses to the dangers of procyclicality would

be one fruitful avenue to explore. Since equilibrium volatility is driven by

the state variable �t measuring the relative size of the long-only sector to the

banking capitalisation, a countercyclical capital adequacy policy that adjusts

the restrictiveness of the VaR constraint to the cycle via �2(Vt) = constantVt�
would �x �t and therefore �(�t). The nefarious feedback loops in a downturn
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are softened as a result. More research should uncover further uses of our

framework.

36



Appendix A

In this appendix we show that the Value-at-Risk constraint can be written as

�
p
D>
t �t�

>
t Dt � Vt for positive constant �. By de�nition VaR is a quantile

of a portfolio return. Standardising by �(h) the volatility of Vt+h � Vt, the
VaR satis�es

Pr
t

�
Vt+h � Vt
�(h)

� �VaR(h)
�(h)

�
= �

Given the normality of Vt+h � Vt at h horizon for small h, and the negli-
gible drift, �

�
�VaR(h)

�(h)

�
= � and so VaR(h) = [���1(�)]�(h). The VaR-

constraint says that the capital V underlying such a portfolio is su¢ cient,

in that for some constant c(h), we have Vt � c(h)VaR(h) at horizon h.

For small h, VaR(h) is small, so that c(h) must be decreasing in h. Since

�(h) =
p
h
p
D>
t �t�tDt for small h, we choose c(h) = c=

p
h and so we can

write the VaR constraint as

Vt �
�
c(���1(�))

�| {z }
=�

q
D>
t �t�tDt

which is the constraint written in the maximization problem (9).

Appendix B

In this appendix, we derive further formal properties of the di¤usion term.

Lemma (Properties of the Di¤usion Term)

[S1] limVt!0 �(Vt) = ��z

[S2] limVt!1 �(Vt) = 0 and limVt!1 Vt�(Vt) =1
[S3] limVt!0

@�
@Vt

= ��z
�2�

and limVt!0
@2�
@V 2t

= 4��z
(�2�)2

. [Call f(V ) := �t���z
Vt

and notice that limV!0 f(V ) = limV!0
@�
@V
. Since we know the expression

for @�
@V

by (33), we see that the problem can be transformed into lim f =

lim 1
Vt
[�2�f(V ) � �]. In turn, we can replace �t

Vt
de�nitionally by f + ��z

V
to

37



get to lim f = lim f(V )[�2��V ]���z
V

. If lim f is not equal to the constant given

here, then the RHS diverges. Since the denominator of the RHS converges

to zero, so must the numerator. Thus the constant is the one shown here.

The proof of the second limit is similar.]

[S4] fV � 2 R : �(V �) = 0g is a singleton. At V �, � is strictly decreasing. [The
second observation comes from (33) while the �rst one comes from the fact

that the mapping V 7!
R1
��2�

V

e�u

u
du is a bijection between R+ and R, so for

each chosen c, there is a unique V (c) setting
h
c� �2���z

R1
� �2�
V (c)

e�u

u
du
i
= 0.]

[S5] �(V ) has exactly one minimum and one maximum. The minimum is at

V 0 s.t. �(V 0) < 0. The maximum is at V 00 s.t. �(V 00) > 0.

Proof of Proposition 2 First, we can read o¤ (52) the variables of interest
as �iit = �~�z

�
Vt�t�t

1�NVt�t�t + 1
�
and �ijt = �

12
t = �~�z

Vt�t�t
1�NVt�t�t = �

11
t � �~�z.

Next, we compute the variance-covariance matrix, the square of the dif-

fusion matrix (52):

�t = �t�t = �
2~�2z[IN +mt11

>] = �2~�2zIN + gt11
>

where

mt := N

�
Vt�

1
t�
1
t

1�NVt�1t�1t

�2
+ 2

Vt�
1
t�
1
t

1�NVt�1t�2t
=

1

�2~�2z
(�11t � � ~�z)

�
2�~�z +N(�

11
t � �~�z)

�
gt : = mt�

2~�2z

where we used the fact that �~�z
Vt�1t�

1
t

1�NVt�1t�1t
= �11t ��~�z. Then insert �t into the

reward-to-risk equation�t�
1
t1 =

�1t�rp
�
1 to get

p
�t�

1
t [�~�z +N(�

11
t � �~�z)]

2
=

�1t � r.
Next compute �t. By de�nition, �t := (�1t � r)21>��1t 1. Since 1 +

gt(�~�z)
�2N 6= 0, by the Sherman-Morrison theorem we see that

��1t = (�~�z)
�2I � gt

(�~�z)4 +N(�~�z)2gt
11>
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and therefore that

�t = (�
1
t � r)2N(�~�z)�2

�
1� Ngt

(�~�z)2 +Ngt

�
Inserting the expression for �t into the expression for �

1
t we get, using the

fact that [�~�z +N(�11t � �~�z)]2 = Ngt + (�~�z)2,

�1t =
�A�Bp

N [�~�z +N(�11t � �~�z)]

where � is the sign function, A := �1t � r and B := N�11t � (N �1)�~�z. Using
again the fact that [�~�z +N(�11t � �~�z)]2 = Ngt + (�~�z)2, we see that

�1t = �A�B
1p
N

�
�~�z +N(�

11
t � �~�z)

�
By de�nition of �1t :

�1t =
1

�2�
�A�B

�
1p
N
[�~�z +N(�

11
t � �~�z)] + Vt

p
N
@�11t
@Vt

�
(54)

Inserting all these expressions into the equation for �11t , �
11
t = �~�z

1�(N�1)Vt�1t �1t
1�NVt�1t �1t

and de�ning xt := 1
N
�~�z + (�

11
t � �~�z), the resulting equation is the ODE

(33) with � replaced by �=N and where �(V ) is replaced by x(V ).

As to risky holdings, we know that Dt =
Vt
�
�t. Noticing that �~�z +

N(�iit � �~�z) = Nxt, we �nd that �1t = 1
N3=2xt

from which the expression for

Dt follows.

Finally we compute the risk premia. Using Itô�s Lemma on (20) we get

�it �
1

2
�11t = ��

1
t (drift of Vt) + r

�dt+
1

2
�
@�1t
@Vt

(di¤usion of Vt)2

Now the drift of capital can be seen to be equal to

drift of Vt = rVt +D>
t (�t � r) = rVt + (�1t � r)

Vt

�
p
Nxt
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and using �t =
�
xt � 1

N
�~�z
�
11> + �~�zI the squared di¤usion term can be

veri�ed to be equal to V 2t
�2
. The drift equation becomes

(�1t � r)
�
1� �1t

Vtp
Nxt

�
=
1

2
(�11t )

2 + �2�1t rVt +
1

2

V 2t
�

@�1t
@Vt

We can rewrite (54) by inserting the ODE for xt to get rid of the partial

derivative term:

�1t = �A�B

p
N

Vt

�
xt �

�

N
~�z

�
Performing the di¤erentiation of �1t and inserting into the drift equation com-

pletes the proof.

40



References
Adrian, Tobias and Nina Boyarchenko (2012) �Intermediary Leverage Cycles
and Financial Stability�Federal Reserve Bank of New York Sta¤ Reports,
567, August 2012

Adrian, Tobias, Paolo Colla and Hyun Song Shin (2012) �Which Financial
Frictions? Parsing the Evidence in the Financial Crisis of 2007-9� NBER
working paper 18335 http://www.nber.org/papers/w18335, forthcoming in
the NBER Macroeconomics Annual, 2012.

Adrian, Tobias and Hyun Song Shin (2010) �Liquidity and Leverage,�Jour-
nal of Financial Intermediation 19 (3), 418-437

Adrian, Tobias and Hyun Song Shin (2011) �Procyclical Leverage and Value-
at-Risk,�Federal Reserve Bank of New York Sta¤ Reports, 338.

Aït-Sahalia, Yacine and Andrew Lo (1998), �Nonparametric Estimation of
State-Price Densities Implicit in Financial Asset Prices,�Journal of Finance,
53, 499-547.

Aiyagari, S. Rao and Mark Gertler (1999) � �Overreaction�of Asset Prices
in General Equilibrium,�Review of Economic Dynamics 2, pp. 3-35.

Andersen, T.G., Bollerslev, T., Diebold, F.X. and Ebens, H. (2001) �The
Distribution of Stock Return Volatility,� Journal of Financial Economics,
61, 1, 43-76.

Basel Committee on Banking Supervision (1996), �Amendment to the Capi-
tal Accord to Incorporate Market Risks,�http://www.bis.org/publ/bcbs24.pdf

Black, Fischer (1976) �Studies of stock price volatility changes,�Proceedings
of the 1976 Meetings of the American Statistical Association, Business and
Economical Statistics Section, pp 177-181.

Black, Fischer and Myron Scholes (1973) �The Pricing of Options and Cor-
porate Liabilities,�Journal of Political Economy, 81, 637-654.

Brunnermeier, Markus and Lasse Pedersen (2009) �Market Liquidity and
Funding Liquidity,�Review of Financial Studies, 22, 2201-2238.

Brunnermeier, Markus and Yuliy Sannikov (2010) �A Macroeconomic Model
with a Financial Sector�working paper, Princeton University

Brunnermeier, Markus and Yuliy Sannikov (2011) �The I-Theory of Money�
working paper, Princeton University

41



Chabakauri, Georgy (2008) �Asset Pricing in General Equilibrium with Con-
straints,�working paper, London Business School

Corsi, Fulvio and Uta Kretschmer, Stefan Mittnik, and Christian Pigorsch
(2005), �The Volatility of Realized Volatility,�Working Paper No. 2005/33,
Center for Financial Studies, Frankfurt

Coudert, Virginie and Mathieu Gexa (2008), �Does risk aversion drive �nan-
cial crises? Testing the predictive power of empirical indicators,�Journal of
Empirical Finance Volume 15, Issue 2, March 2008, Pages 167-184

Danielsson, Jon, Paul Embrechts, Charles Goodhart, Felix Muennich, Con
Keating, Olivier Renault and Hyun Song Shin (2001) �An Academic Re-
sponse to Basel II�Financial Markets Group Special Paper 130
http://hyunsongshin.org/www/basel2.pdf

Danielsson, Jon, Hyun Song Shin and Jean-Pierre Zigrand (2004) "The Im-
pact of Risk Regulation on Price Dynamics" Journal of Banking and Finance,
28, 1069-1087

Danielsson, Jon and Jean-Pierre Zigrand (2008) �Equilibrium Asset Pricing
with Systemic Risk�, Economic Theory, 35, 293-319

Fostel, Anna and John Geanakoplos (2008) �Leverage Cycles and The Anx-
ious Economy�American Economic Review 2008, 98:4, 1211-1244.

Fostel, Anna and John Geanakoplos (2012) �Why Does Bad News Increase
Volatility and Decrease Leverage?�Journal of Economic Theory, 2012, 147(2):
501-525

Geanakoplos, John (1997) �Promises, Promises�In W.B. Arthur, S. Durlauf
and D. Lane (eds.), The Economy as an Evolving Complex System, II. Read-
ing MA: Addison-Wesley, 1997, pp. 285-320.

Geanakoplos, John (2009) �The Leverage Cycle� NBER Macroeconomics
Annual 2009, In D. Acemoglu, K. Rogo¤ and M. Woodford, eds., NBER
Macroeconomic Annual 2009, 24, 1-65, University of Chicago Press, 2010.

Geanakoplos, John (2010) �Incorporating Financial Features into Macroeco-
nomics: Discussion," in Macroeconomic Challenges: The Decade Ahead.
Jackson Hole, Federal Reserve Bank of Kansas City Economic Policy Sym-
posium, 2010

Geanakoplos, John (2011) �What�s Missing from Macroeconomics: Endoge-
nous Leverage and Default," in Marek Jarocinski, Frank Smets, and Christian
Thimann (eds.), Approaches to Monetary Policy Revisited �Lesson from the

42



Crisis, Sixth ECB Central Banking Conference 18-19 November 2010, Euro-
pean Central Bank, 2011, pp. 220-238

Geanakoplos, John andWilliam Zame (2003) "Liquidity, Default, and Crashes:
Endogenous Contracts in General Equilibrium," Advances in Economics and
Econometrics: Theory and Applications, Eighth World Conference, Volume
II, Econometric Society Monographs (2003), pp. 170-205.

Gorton, Gary (2009) "The Panic of 2007," in Maintaining Stability in a
Changing Financial System, Proceedings of the 2008 Jackson Hole Confer-
ence, Federal Reserve Bank of Kansas City

Gorton, Gary (2010) Slapped by the Invisible Hand: The Panic of 2007,
Oxford University Press

Gorton, Gary and Andrew Metrick (2010) �Securitized Banking and the Run
on Repo�Forthcoming in Journal of Financial Economics

Gromb, Denis and Dimitri Vayanos (2002) �Equilibrium and Welfare in Mar-
kets with Financially Constrained Arbitrageurs,�Journal of Financial Eco-
nomics 66, pp. 361-407.

He, Zhiguo and Arvind Krishnamurthy (2010) "Intermediary Asset Pricing,"
forthcoming in American Economic Review

He, Zhiguo and Arvind Krishnamurthy (2011) "A Model of Capital and
Crises," forthcoming, Review of Economic Studies.

Heston, S. (1993), �A closed-form solution for options with stochastic volatil-
ity with applications to bond and currency options,� Review of Financial
Studies 6, 327-343.

Jones, Christopher (2003), �The dynamics of stochastic volatility: evidence
from underlying and options markets,� Journal of Econometrics, 116, 181-
224.

Kashyap, Anil, Raghuram Rajan and Jeremy Stein (2008) �Rethinking Cap-
ital Regulation�paper prepared for the Federal Reserve Bank of Kansas City
Symposium at Jackson Hole, 2008.

Kim, Dongcheol and Kon, Stanley J. (1994), "Alternative Models for the
Conditional Heteroskedasticity of Stock Returns," Journal of Business, 67,
563-598

Mele, Antonio (2007), "Asymmetric Stock Market Volatility and the Cyclical
Behavior of Expected Returns," Journal of Financial Economics 86, 446-478
(2007)

43



Merton, Robert (1973), �Theory of Rational Option Pricing,�Bell Journal
of Economics and Management Science, 4, 141-183.

Oehmke, Martin (2008) �Liquidating Illiquid Collateral�working paper, Columbia
University GSB

Schwert, G. William (1989) �Why Does Stock Market Volatility Change Over
Time?,�Journal of Finance 44, 1115, 1153.

Sherman, Jack and Winifred J. Morrison (1949) �Adjustment of an inverse
matrix corresponding to changes in the elements of a given column or a given
row of the original matrix,�Ann. Math. Statist., 20, 621.

Shleifer, Andrei and Robert Vishny (1997) �The Limits of Arbitrage�Journal
of Finance, 52, 35-55.

Tauchen, George, Zhang, Harold H. and Liu, Ming, 1996, "Volume, Volatility
and Leverage: A Dynamic Analysis," Journal of Econometrics, 74, 177-208

Xiong, Wei (2001) �Convergence Trading with Wealth E¤ects: An Ampli-
�cation Mechanism in Financial Markets�, Journal of Financial Economics
62, 247-292

44


