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Abstract

Large once–off events cause large changes in prices but may not affect
volatility and correlation dynamics as much as smaller events. Standard
volatility models may deliver biased covariance forecasts in this case. We
propose a multivariate volatility forecasting model that is accurate in the
presence of large once–off events. The model is an extension of the dynamic
conditional correlation model (DCC) model. Compared to the DCC model,
our method produces more precise out–of–sample covariance forecasts and,
when used in portfolio allocation, it leads to portfolios with similar return
characteristics but lower turnover and hence higher profits.
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1 Introduction

Prices of financial assets sometimes exhibit large jumps caused by once–off events,

such as news announcements and it is often found that such extreme returns af-

fect volatility less than a standard GARCH model would predict.1 Using standard

GARCH in such cases therefore leads not only to an overestimation of volatility

for the days following the event, but, since the unconditional volatility forecast is

upward biased, all volatility forecasts tend to be larger than they otherwise would

be. A similar argument applies for correlation estimates. If only one of the stocks is

subject to a large jump in prices, it biases the correlation estimates towards zero. In

the case of co–jumps of the same (opposite) sign, the correlations are biased toward

(minus) one.

Our objective in this paper is the development of a multivariate volatility forecasting

model that is accurate in the presence of once–off events causing large changes in

prices whilst not affecting volatility dynamics. There are two main directions one

could take in the development of such a model. Either by explicitly modeling a jump

process within a standard volatility model or by employing a robust estimation

procedure for a standard volatility model. The former approach is necessary in

applications where the properties of the jumps are of interest. However, jumps in

daily returns are rare events and estimates of the jump process have large confidence

bands. If the ultimate objective is forecasting volatility, a robust approach may

therefore be a better choice, and this is what we do in this paper.

Our starting point is the univariate procedure proposed by Muler and Yohai (2008)

for the estimation of GARCH models, whereby the impact of returns on volatility

forecasts is bounded. They term this procedure as “bounded innovation propaga-

tion” (BIP) GARCH. We adjust their procedure to make it suitable for multivariate

volatility forecasting when the underlying assets are subject to once–off shocks, and

this is the main contribution of the paper. We are only aware of one paper do-

ing something similar, i.e. Boudt and Croux (2010) proposing a robust estimation

method for the BEKK model of Engle and Kroner (1995). Their robust model is

1See e.g. Andersen, Bollerslev, and Diebold (2007) and Bauwens and Storti (2009).
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not suited for volatility forecasting since on the days following a jump in one of the

assets, it underestimates the volatility of the assets that have not jumped. To avoid

this and preserve the positive definiteness of the covariance forecasts, we choose

to disentangle the robust forecasting of univariate volatilities and correlations and

take the dynamic conditional correlation model (DCC) of Engle (2002) as our base-

line model. We use the Aielli (2009) version termed cDCC, to obtain a consistent

estimation of all model parameters.

We make three extensions to the cDCC model. First, we use BIP–GARCH for

the univariate volatilities instead of a standard GARCH. Second, we bound the

impact of large innovations on the correlation matrix, through a BIP procedure in

the update equation of the conditional correlation, along with a robust procedure to

estimate the unconditional correlation. Finally, we propose a robust M–estimator

for the parameters of the correlation dynamics. These three extensions ensure that

extreme once–off events have little influence on the covariance predictions made by

the proposed BIP–cDCC model.

We compare our model with the baseline models (standard GARCH and cDCC) by

a variety of means, first by looking at the impact on volatility and correlations of

the 50% one day drop in the stock price of Apple in 2000 due to a bad earnings

announcement. Because this large event was once–off and explained by exogenous

news arrival it provides an ideal test for the difference the BIP–GARCH makes

compared to a standard GARCH model. We find that in the standard model the

volatility shoots up sharply following the event, and conditional volatility forecasts

are higher on average throughout the sample than when our procedure is used. In

a portfolio of Apple and Microsoft, correlations fall sharply in October 2000 in the

baseline model compared to our model, and throughout the sample remain lower.

This is because an earnings surprise led to a 20% price increase for Microsoft, while

Apple fell by 6% that same day. The BIP–cDCC model is designed to be robust

against such cojumps triggered by once–off events.

Next, we run a Monte Carlo experiment to study the effect of jumps on the DCC and

cDCC parameter estimates. The results indicate that estimates from the baseline

model can result in a large bias when the data has additive jumps, while the BIP
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procedure provides accurate estimates of the parameters.

Third, the conditional covariance forecasts are compared with ex post covariance

estimates based on high–frequency data. Using the model confidence set methodol-

ogy, proposed by Hansen, Lunde, and Nason (2009), we find that the BIP models

always belong to the set of superior forecasting models. Moreover, for most forecast

horizons, their covariance forecasts are significantly better than all other models

considered.

Our key empirical conclusion follows from applying the BIP model to the problem

of optimal portfolio allocation where we study an investor who adopts a volatility

timing strategy where the changes in ex ante optimal portfolio weights are solely

determined by the forecasts of the conditional covariance matrix. We find that the

portfolio returns when using the BIP method have similar unconditional first and

second moments as when the baseline model is employed. However, by using the

BIP procedure we increase profits because the BIP conditional covariance matrices

are more stable, resulting in lower portfolio churn and thus lower transaction costs.

Therefore, even if both procedures have same mean return and standard deviation,

net of transaction costs, the BIP procedure yields more profits overall.

The structure of the paper is as follows. Section 2 describes the univariate BIP

GARCH volatility forecast model. Section 3 then proposes the robust correlation

forecasting method. The BIP–cDCC forecasts rely on robust estimates of the uncon-

ditional mean, variance and correlation. We relegate the details on the computation

of these estimators to the Appendix. Section 4 reports the results of the Monte

Carlo study on the effect of jumps on parameter estimates of the cDCC and BIP–

cDCC models. Section 5 evaluates the forecasting precision of the models, using

high–frequency data covariance estimates as proxies for the true covariance. Section

6 analyzes the economic consequences of using the BIP–cDCC model for a minimum

variance investor. Finally, Section 7 summarizes our main findings and points out

some directions for future research.
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2 Univariate Volatility Forecasting in the Pres-

ence of Extremes

Many volatility models, such as GARCH, are based on the assumption that each

return observation has the same relative impact on future volatility, regardless of

the magnitude of the return. This assumption is at odds with an increasing body

of evidence indicating that the largest return observations have a relatively smaller

effect on future volatility than smaller shocks (see for instance Andersen, Bollerslev,

and Diebold, 2007).

One reason is extremely large shocks caused by once–off events that cannot be

expected to influence future volatility much. One example is the stock price of

Apple, which fell 52% on September 29, 2000 after it warned its fourth–quarter

profit would fall well short of Wall Street forecasts.

We employed Gaussian quasi–maximum likelihood (QML) to estimate a GARCH(1, 1)

model on the daily returns on Apple with a sample of one thousand days starting

on the first day of 2000 and ending in December 2003. The results as well as the

GARCH specification are reported in Table 1.

Table 1: Impact on GARCH of an extreme Apple return

Sample and method α1 β1 α1 + β1
ω×104

1−α1−β1

1
T

∑T
t=1 ĥt VoV

GARCH full sample 0.157 0.824 0.981 29.421 15.140 1.543
GARCH after outlier 0.019 0.976 0.995 8.000 12.038 0.827
BIP–GARCH full sample 0.029 0.969 0.999 11.630 10.997 0.681

Note: The GARCH(1, 1) specification for the daily return series of Apple (yt) is yt =
√
htzt

where zt
i.i.d.∼ N(0, 1) and ht = ω + α1y2t−1

+ β1ht−1. The robust GARCH specification is given in (2.4). VoV

(volatility of volatility) is the standard deviation of
√

ĥt. The estimated volatilities are expressed in percentage

points.

We then estimated the model using returns only after September 29, 2000 (we

dummied out that day and got the same results). Including the extreme observation

increases α1 from 0.019 to 0.157, decreases β1 from 0.979 to 0.824 and increases

the long–run variance from 8 × 10−4 to about 30 × 10−4. Including this once–off

explainable event in the sample thus strongly biases the parameter estimates and,
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as a consequence, the out–of–sample forecasts. We denote this as extreme bias.

For comparison, we estimated a model taking this into account, the BIP–GARCH

model discussed below, and found that the results are not affected much by the

extreme observation. This can be seen in Figure 1 where we plot the daily Ap-

ple returns and the volatility forecasts obtained by the GARCH and BIP–GARCH

model. We find that in the standard model the volatility shoots up sharply following

the event, and conditional volatility forecasts are higher on average throughout the

sample than when the BIP procedure is used.
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Figure 1: Daily returns in % (upper panel) for Apple and estimated conditional
standard deviation for the GARCH and BIP–GARCH (lower panel) on the period
2000-2003.

Table 1 also reports two summary statistics on the estimated conditional volatilities.

We see that the mean variance estimate from the GARCH model is only half of its

value predicted by the model parameters, while for the BIP GARCH model, these

values are very close. A final interesting observation is the difference in the estimated

volatility of volatility for the two models. It is 1.543 for the GARCH model and

only 0.681 for the BIP–GARCH model.
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In conclusion, with this sample, the use of the BIP–GARCH model to forecast

volatility lead to much more stable volatility forecasts, as is also clear from the time

series plot of volatilities in Figure 1.

Other examples include the October 1987 crash caused by portfolio insurance in-

duced automatic program trading, the extreme volatility during the downfall of

LTCM in 1998, and several events during the recent crisis. It is also straightforward

to demonstrate this by Monte Carlo experiments.

2.1 Proposals for Addressing the Extreme Bias

Several proposals for explicitly addressing how extreme returns affect volatility have

been made, e.g. Andersen, Bollerslev, and Diebold (2007) and Corsi, Pirino, and

Renó (2008) who use a simple restricted autoregressive model to forecast the re-

alized volatility. They show that decomposing volatility into a jump component

and a continuous component results in the jump component being considerably less

persistent than the continuous component.

Franses and Ghijsels (1999), Grossi (2004), Vlaar and Palm (1993) and Muler and

Yohai (2008), among others, propose new methods designed to estimate the pa-

rameters of a GARCH(1,1) model in the presence of additive, but once–off, jumps.

After subtracting the mean µ, the observed return series s∗t has a standard normal

GARCH component yt and a jump component at, i.e.

st = s∗t − µ = yt + at (2.1)

yt =
√

htzt where zt
i.i.d.
∼ N(0, 1) (2.2)

ht = ω + α1y
2
t−1 + β1ht−1. (2.3)

The assumption of normal innovations could by replaced by another distributional

hypothesis.

In the economic literature, the occurrence of additive jumps is mostly modeled by

means of a Poisson distribution, such as in Vlaar and Palm (1993), Chan and Maheu

(2002) and Benito, León, and Nave (2007). Such a parametric approach requires one
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to further specify and estimate a model governing the time–varying jump intensity

and also the jump size. This leads to an increased complexity of the estimation

method (especially in a multivariate framework) and a potential specification bias.

Moreover, because of the low frequency of extremes in the sample, these estimates

often have wide confidence bands.

If the ultimate objective is forecasting volatility, inference on the jump process is not

needed to produce accurate volatility forecasts. In the “robust” approach, jumps

are automatically detected in the estimation step and their effect on parameter

estimation and volatility forecasts is bounded.

2.2 Bounded Innovation Propagation GARCH

In absence of jumps (i.e., when at = 0 ∀t), model (2.1)-(2.3) reduces to a standard

GARCH(1,1) with normal innovations. This model is usually estimated by (Q)ML.

When at 6= 0 for some t ∈ {1, . . . , T}, yt and at are not directly distinguishable from

s∗t . In this case the Gaussian QML is not appropriate because at−1 has no impact

on ht while assuming a GARCH(1,1) for s∗t would imply ht = ω+α1(yt−1+ at−1)
2+

β1ht−1, i.e., a large and slowly decaying effect of at−1 on future volatility predictions.

Furthermore, if E(at) 6= 0, µ is no longer the unconditional mean of s∗t and thus

both its QML estimate and the empirical mean are expected to be strongly biased.

2.2.1 BIP–GARCH

Muler and Yohai (2008) (MY) show that one can limit the effect of at on the es-

timation of the parameters of the GARCH model by using a modified GARCH

specification downweighing the effect of past jumps (at−1) on time t conditional

variance. Their approach estimates the GARCH parameters and detects jumps

jointly, by identifying returns as jumps when a return is an extreme outlier un-

der the estimated GARCH model. Because of the time–varying volatility, extremes

need to be identified by the squared devolatilized return s2t−1/ht−1 rather than the

squared return itself. Otherwise, jumps would be overdetected on days with high
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volatility and underdetected on days with low volatility. This leads to an auxiliary

GARCH(1,1) model with weights on extremes:

ht = ω + α1w

(

s2t−1

ht−1

)

s2t−1 + β1ht−1, (2.4)

where w(·) is a weight function. Since s2t−1/ht−1 is chi–square distributed with

one degree of freedom if there is no jump a time t − 1, it is natural to detect a

jump occurrence in s2t−1 if s2t−1/ht−1 exceeds kδ,1, the δ quantile of the chi–square

distribution with one degree of freedom. The weight function used by MY is given

by

wMY

kδ,1
(u) = min

(

1,
kδ,1
u

)

. (2.5)

Model (2.4) with weight function (2.5) is called Bounded Innovation Propagation

(BIP)–GARCH since the effect of past shocks on future volatility is bounded. MY

show that the combination of a BIP–GARCH with an outlier robust M–estimator

considerably reduces the root mean squared error (RMSE) of the parameter esti-

mates in presence of additive jumps.2

2.2.2 M–estimator of the BIP–GARCH

For the estimation of the BIP–GARCH model, MY recommend using a M–estimator

that minimizes the average value of an objective function ρ(·), evaluated at the log–

transform of squared devolatilized returns, i.e.

θ̂M = argminθ∈Θ
1

T

T
∑

t=1

ρ

(

log
s2t
ht

)

. (2.6)

For robustness, this ρ–function needs to downweight the extreme observations and

hence the jumps. The choice of ρ(·) trades off robustness vs. efficiency. Based on a

comparison of several candidate ρ–function in the webappendix (Boudt, Dańıelsson,

and Laurent, 2010), we recommend the one associated to the Student t4 density

2Harvey and Chakravarty (2008) propose an alternative weight function based on the score of
the t distribution with ν degrees of freedom wHC

ν (u) = ν+1
ν−2+u

.
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Table 2: Correction factor cδ,N for the weighted variance estimator, the BIP–
GARCH model and for the M–estimator of (c)DCC models with N–dimensional
Gaussian innovations

cδ,N σN,4

N / δ 1 0.99 0.975 0.95 0.90
1 1 1.0185 1.0465 1.0953 1.2030 0.8260
2 1 1.0101 1.0257 1.0526 1.1111 0.8258
5 1 1.0050 1.0122 1.0255 1.0542 0.8467
10 1 1.0028 1.0073 1.0154 1.0330 0.8835
50 1 1.0009 1.0025 1.0053 1.0118 0.9644

function:

ρ2(z) = −z + σ1,4ρt1,4(exp(z)),

where

ρtN,ν
(u) = (N + ν) log

(

1 +
u

ν − 2

)

(2.7)

and

σN,ν =
N

E[ρ′tN,ν
(u)u]

, (2.8)

with u a chi–squared random variable with N degrees of freedom. σN,4 is reported

in Table 2 for N = 1, 2, 5, 10 and 50. Next we propose two modifications for the MY

procedure that lead to more accurate volatility forecasts.

2.3 A Modified MY Procedure

To aid in forecasting the conditional variance more than one period into the future

(see Section 2.4), we propose modifying the MY weighting scheme to ensure that

the conditional expectation of the weighted squared unexpected shocks is still the

conditional variance in absence of jumps, i.e.

wkδ,1(u) = cδ,1w
MY

kδ,1
(u), (2.9)
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where

cδ,N =
E[u]

E[wMY

kδ,N
(u)u]

=
1

Fχ2
N+2

(χ2
N(δ))

, (2.10)

with u a chi–square random variable with N degrees of freedom. Our simulations

(available upon request) also show that this leads to a smaller bias in the GARCH

parameters based on the BIP specification. Table 2 reports the correction factors

cδ,1 for various values of δ. Note that we used this BIP–GARCH model in Table 1

with δ = 0.975.

A second modification of the MY procedure is that we integrate reweighted estimates

of the mean and variance in the forecasting procedure. The above definitions of the

BIP–GARCH model and M–estimators are for st = s∗t − µ. MY assume that µ = 0

and thus only focus on the conditional variance. Unfortunately, this assumption

may not hold in practice and a jump robust estimator of µ is therefore needed.

Furthermore, MY estimate the intercept ω jointly with the parameters α and β. As

noted by Engle and Mezrich (1996), this is especially difficult if α and β add up

to a number very close to one, as the intercept will be very small but must remain

positive.

Engle and Mezrich (1996) propose variance targeting as an estimation procedure

where ω is reparameterized as ĥ(1 − α1 − β1) (with ĥ a consistent estimator of h)

before estimating the remaining parameters. Francq, Horvath, and Zakoian (2010)

show that when the model is misspecified, the variance targeting estimator can be

superior to the QMLE for long–term prediction or Value–at–Risk calculations.

In absence of outliers, natural choices for µ̂ and ĥ are the sample mean and the

sample variance of the returns. However, these estimators are known to be very

sensitive to outliers (e.g. outliers causing a large upward bias in the sample vari-

ance). We therefore propose to use robust reweighted mean and variance estimators

proposed by Boudt, Croux, and Laurent (2008) and described in Appendix A. In

the webappendix (Boudt, Dańıelsson, and Laurent, 2010), we verify the accuracy of

the BIP M–estimator with Student t4 loss function and targeting towards the robust

reweighed mean and variance, relatively to the QML estimator and the estimators

considered in MY.
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2.4 Forecasting with Univariate BIP–GARCH Models

In the GARCH(1, 1) model in (2.3), the optimal r–step–ahead forecast of the con-

ditional variance, ht+r|t ≡ Et(ht+r) is given by:

ht+r|t = ω̂ + α̂1y
2
t+r−1|t + β̂1ht+r−1|t, (2.11)

where y2t+r−1|t ≡ Et[y
2
t+r−1], which is ht+r−1|t for r = 2, 3, . . . and y2t for r = 1. Sim-

ilarly, r–step–ahead forecasts of the conditional variance of the BIP–GARCH(1, 1)

are obtained as follows

ht+r|t = ω̂ + α̂1wy
2
t+r−1|t + β̂1ht+r−1|t, (2.12)

where wy2t+r−1|t ≡ Et

[

wkδ,1

(

y2t+r−1/ht+r−1

)

y2t+r−1

]

, which is ht+r−1|t for r = 2, 3, . . .

and wkδ,1 (y
2
t /ht) y

2
t for r = 1, because wkδ,1 in (2.9) is chosen such that E[wkδ,1(u)u] =

1 for u a χ2
1 random variable (which does not hold for the original specification of

MY).

Note that (2.11) and (2.12) are based on expectations of future squared returns

under the assumption of a model without price jumps. In the presence of jumps, yt

is not observed and is naturally replaced by st in the above formulas. Extremes thus

affect the forecasts not only through a potential bias in the parameter estimation,

but also because lagged returns are used to forecast future variances. The effect

of these outliers on future variances is unbounded under the GARCH model, but

limited under the BIP–GARCH model.

3 Extremes and Multivariate Volatility Forecast-

ing

The effect of extremes on univariate volatility forecasting can equally be expected to

be present in the forecasting of correlations. While little research has demonstrated

the impact of extreme observations for correlations, it is readily demonstrated, e.g.
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by adding one asset to the example with Apple in Section 2, e.g. Microsoft. Figure

2 plots the daily returns (in %) for these two series. Note the 20% return on

the Microsoft stock price, triggered by the once–off event of Microsoft posting first–

quarter net income of 46 cents per share, 12 percent above the mean analyst estimate

of 41 cents. The same day the stock price of Apple fell by 6%.

Apple 
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Figure 2: Daily returns in % for Apple and Microsoft (first two panels) and estimated
cDCC and BIP-cDCC conditional correlation (lower panel) for the period 2000-2003.

Table 3 shows that the effect of this extreme is to cause cDCC conditional corre-

lations to drop in one day from 21.5% to only 3.2%, while historically the average

conditional correlation is around 45%. The effect of this extreme is persistent, since

it takes more than a month for the estimated conditional correlation to return to its

level before the once–off event.

For comparison, we estimated a BIP version of the cDCC model and found the

conditional correlation only dropping by 3 percentage points, not 18 points like the

baseline model. We further note the strong difference between the two unconditional

correlation estimates (about 45% for the cDCC and about 55% for the BIP version)

leading the BIP–cDCC correlation to be significantly higher than the cDCC corre-
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Table 3: Apple/MSFT return and extremes, impact on cDCC–GARCH. Estimation
on the full sample (i.e., January 2000 – December 2003).

cDCC parameters Correlations
t0 = Oct 19, 2000

Method Q12 α β R̂12,t0 R̂12,t0+1 R̂12,t0+5 R̂12,t0+15 R̂12,t0+20

cDCC 0.449 0.026 0.958 0.215 0.032 0.041 0.091 0.167
BIP–cDCC 0.549 0.021 0.956 0.326 0.293 0.288 0.326 0.379

Note: R̂12,t corresponds to the estimated conditional correlation (between Apple and Microsoft) of the classical

and robust DCC models on day t.

lation for almost all days in the sample, as can be seen in the lower panel of Figure

2.

In contrast with the large literature on robust estimation of univariate GARCH

models, discussed above, little work exists on estimation of multivariate GARCH

models in the presence of once–off jumps. We are aware of only one paper, i.e.

Boudt and Croux (2010), proposing a method for robust estimation of the BEKK

covariance matrix (Engle and Kroner, 1995).

3.1 Baseline Model

Our baseline model is a multivariate version of (2.1)–(2.3), where the vector of

demeaned observed returns St = (s1,t, . . . , sN,t)
′ is composed of two non–observable

components, a GARCH(1,1)–cDCC process Yt = (y1,t, . . . , yN,t)
′ and anN–dimensional

additive jump process At:

St = Yt + At (3.1)

Yt = H
1/2
t Zt where Zt

i.i.d.
∼ N(0, IN). (3.2)

Let Rt be the conditional correlation matrix with Rij,t its (i, j)
th element and define

Dt as the diagonal matrix containing the conditional variances hii,t, i.e.,

Dt = diag (h
1/2
11,t . . . h

1/2
NN,t). (3.3)
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Then in the cDCC model the conditional covariance matrix Ht is given by:

Ht = DtRtDt =
(

Rij,t

√

hii,thjj,t

)

. (3.4)

The conditional correlation Rt is based on the matrix process Qt, whose time–

variation is driven by the devolatilized returns Ỹt = (ỹ1,t, . . . , ỹN,t)
′ = D−1

t Yt, i.e.

Qt = (1− α− β)Q+ αPt−1Ỹt−1Ỹ
′
t−1Pt−1 + βQt−1, (3.5)

with Pt = diag (q
1/2
11,t . . . q

1/2
NN,t), Q the unconditional correlation matrix of PtỸt and

α and β are nonnegative scalar parameters satisfying α + β < 1.3 This matrix is

then linked to the conditional correlation matrix as follows

Rt = diag (q
−1/2
11,t . . . q

−1/2
NN,t) Qt diag (q

−1/2
11,t . . . q

−1/2
NN,t). (3.6)

Under the cDCC model, the estimation of the matrix Q and the parameters α

and β are intertwined, since Q is estimated sequentially as the correlation matrix of

PtỸt, where Pt also depends on α and β. However since Pt only involves the diagonal

elements of Qt, the diagonal elements of which do not depend on Q (because Qii = 1

for i = 1, . . . , N), Aielli (2009) shows that for given values of α and β

qii,t = (1− α− β) + αqii,t−1ỹ
2
i,t−1 + βqii,t−1, i = 1, . . . , N. (3.7)

The remainder of the estimation procedure of Aielli (2009) is an iteration until con-

vergence of (i) estimation of Q as the sample correlation of PtỸt and (ii) multivariate

Gaussian QML estimation of α and β using the cDCC specification.

3The extension of the scalar–cDCC model (and its robust version discussed in the next section)
to the more general cases where α and β are N×N matrices (Engle, 2002) or block-diagonal (Billio,
Caporin, and Gobbo, 2006) is straightforward but not investigated here for the sake of simplicity.

15



3.2 A cDCC Model with Weights on Extremes

In the presence of additive jumps, i.e. At in (3.2), the cDCC procedure in Section

3.1 is likely to deliver biased parameter estimates and hence covariance forecasts.

To remedy this, we propose three modifications to the original cDCC, i.e.,

i) the replacement of GARCH with the BIP–GARCH model on St =

(s∗1,t − µ̂1, ..., s
∗
N,t − µ̂N) as described in Section 2.3 and Appendix

A to compute the devolatilized returns S̃t = D−1
t St;

ii) estimation of Q with a robust correlation estimator;

iii) and replacement of the cDCC model with a BIP–cDCC specifica-

tion.

In the BIP–cDCC model, the effect of S̃t−1S̃
′
t−1 on Qt is bounded. The BIP–cDCC

model must only bound the most extreme returns and still yield positive semidefi-

nite covariance matrices. The latter condition is verified if the weights are positive

and identical for all elements in S̃t−1S̃
′
t−1. This calls for a scalar measure of the

extremeness of S̃t−1, and to apply the bounding, the distribution of this statistic

should be known.4

Under the standard cDCC model without jumps, S̃t−1 is conditionally normally

distributed with mean zero and covariance matrix Rt−1. Cox (1968) and Healy

(1968) proposed to use the squared Mahalanobis Distance (MD) to detect extremes

in multivariate normal data, i.e.,

dt−1 = S̃ ′
t−1R

−1
t−1S̃t−1. (3.8)

The MD is conditionally distributed as a chi–square random variable with N degrees

of freedom. If any of the components in S̃t−1 is an extreme or S̃t−1 is a correlation

4The use of thresholds to model the conditional correlations of financial return series is also
considered in Audrino and Trojani (2010). Their threshold is however based on the average cross-
product of the components of S̃t−1. In the presence of time–varying conditional correlations, the
distribution of this statistic is unknown. Audrino and Trojani (2010) use a data–driven method to
estimate a fixed threshold. Because of the time–variation in the distribution of their statistic, this
approach may not be optimal.
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outlier, the MD will be inflated. Hence, if dt−1 exceeds a high quantile of the χ2(N)

distribution (denoted kδ,N), it is likely that St−1 is an extreme return and should

be downweighted. We can thus use a similar weight function as in the univariate

BIP–GARCH model. The BIP–cDCC then takes the form

Qt = (1− α− β)Q+ αwkδ,N (dt−1)Pt−1S̃t−1S̃
′
t−1Pt−1 + βQt−1, (3.9)

where wkδ,N (u) is as in (2.9) but the threshold kδ,N and correction factor cδ,N are now

computed under the χ2(N) distribution (see Table 2). The choice of δ is based on

an efficiency versus robustness trade–off. If all return observations follow the cDCC

model, then the BIP–cDCC model induces a bias and larger mean squared errors in

the estimated parameters. The higher the values of kδ,N , the closer the BIP–cDCC

model is to the cDCC model and hence the smaller the misspecification bias is. But

large values of kδ,N also imply that the effect of extremes on correlations becomes

larger. In the remainder of the paper, we take δ = 0.975.

Note that in the univariate case, the MD is just the squared devolatilized return. Our

multivariate technique for bounding is thus analogous with the approach proposed

in Section 2.3.

3.3 Reweighted Unconditional Correlation Estimator

In the cDCC model the intercept of Qt is an explicit function of Q, the long run

correlation matrix of S̃t, typically estimated by the sample correlation of S̃t. The

presence of additive jumps is likely to bias this estimate, just like it does for volatil-

ities. It is thus desirable to replace the simple correlation matrix with an estimator

that is more robust in the presence of such extremes.

We propose using a robustly reweighted correlation estimator that is proportional to

the sample correlation of the observations for which no extreme has been detected

using a multivariate test statistic based on local correlation estimates. It is analogous

to the reweighted mean and variance estimators of Appendix A. Details on the

construction of this estimator are given in Appendix B.
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3.4 Estimation of the BIP–cDCC Model

Estimation of the cDCC model is straightforward, even for moderately large N , and

we aim to keep estimation of the model we propose straightforward as well.

Like in the univariate approach, we use M–estimators to estimate α and β. A general

class of M–estimators for MGARCH models is where one minimizes the sum of the

average value of a ρ–function, evaluated at the squared Mahalanobis distances and

the average value of the log of the determinant of the correlation matrices, i.e.,

θ̂M = argminMT (θ, ρ) ≡
1

T

T
∑

t=1

[

log detRt + σρ
(

S̃ ′
tR

−1
t S̃t

)]

, (3.10)

where σ is a correction factor. If ρ(z) = z and σ = 1, we obtain the Gaussian QML

estimator as a special case which corresponds to the original estimation method

advocated by Engle (2002). From the first order condition of the M–estimator, it

is clear that the influence of extremes on the M–estimate depends strongly on the

derivative of the ρ–function used:

∂MT (θ, ρ)

∂θj
=

1

T

T
∑

t=1

Tr
[

IN − σρ′(S̃ ′
tR

−1
t S̃t)S̃tS̃

′
tR

−1
t

] ∂Rt

∂θj
R−1

t = 0, (3.11)

where Tr is the trace operator. Since each return S̃t is weighted by the derivative

of the ρ–function evaluated at the squared Mahalanobis distance of S̃t in terms of

Rt, the extreme bias on the estimate will be lower for M-estimators with decreasing

ρ–functions. The Gaussian QML is very sensitive to additive jumps because in this

case ρ′(S̃ ′
tR

−1
t S̃t) = 1 ∀t, irrespective of the Mahalanobis distance. Conversely, the

M-estimator with ρtN,4
as defined in (2.7) is less sensitive to extremes, since its

derivative ρ′tN,4
(z) = N+4

2+z
decreases at the rate 1/z to zero. The correction factor

σN,4 in (2.8) makes this estimator consistent in the absence of extremes. For typical

values of N , we tabulate the correction factor σN,4 in Table 2.

The M–estimation procedure of the BIP–cDCC model is similar to the QML es-

timation of the cDCC since Q, α and β are estimated in an iterative way. It

starts with the estimation of Q as the reweighted unconditional correlation ma-
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trix of P1S̃1, . . . , PT S̃T where the diagonal elements of Qt are obtained using the

BIP version of (3.7), i.e.,

qii,t = (1− α− β) + αw(s̃2i,t−1)qii,t−1s̃
2
i,t−1 + βqii,t−1. (3.12)

The estimator then iterates until convergence through estimation ofQ as the reweighted

correlation of P1S̃1, . . . , PT S̃T and Student t4 M-estimation of α and β using the

BIP–cDCC specification.

3.5 Forecasting with BIP-cDCC models

We now have all building blocks to construct robust multivariate volatility fore-

casts. Unfortunately, multistep forecasts of the covariance matrix cannot be made

analytically, because the model is not linear in squares and crossproducts of the

data. As an approximation, we follow Engle and Sheppard (2001) by constructing

the BIP–cDCC r–step–ahead volatility forecasts as

Ht+r|t = Dt+r|tRt+r|tDt+r|t, (3.13)

where Dt+r|t is the diagonal matrix holding the r-step ahead conditional variance

forecasts as described in Section (2.4). The correlation forecast Rt+r|t is the stan-

dardized version of Qt+r|t, where the 1–step-ahead forecast is obtained by projecting

(3.9) one step into the future and for r > 1

Qt+r|t = (1− α̂− β̂)Q̂ + (α̂ + β̂)Qt+r−1|t, (3.14)

since E[wkδ,N (Z
′Z)ZZ ′] = IN if Z

i.i.d.
∼ N(0, IN).

4 Simulation Study of Estimation Precision

Robust estimation of the model parameters is a key feature of the proposed robust

covariance forecasting method. We confirm the good finite sample properties (bias
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and RMSE) of the estimator with a Monte Carlo study and show that, in contrast

with the QML estimator, it is not much influenced by jumps in the data.

Simulation setup: We generate bivariate returns S∗
t as the sum of a standard bivari-

ate GARCH(1,1)–cDCC process and a jump process At. Let t1, . . . , tl be the times

when jumps are observed. The simulated returns are given by:

S∗
t =

(

0.05

−0.05

)

+

{

Yt + At if t = ti, 1 ≤ i ≤ l = εT

Yt elsewhere ,

Yt = H
1/2
t Zt, Zt ∼ N(0, I2)

h1,t = 0.1 + 0.1y21,t−1 + 0.8h1,t−1

h2,t = 0.1 + 0.2y22,t−1 + 0.7h2,t−1

Qt = (1− 0.1− 0.8)Q+ 0.1Pt−1Ỹt−1Ỹ
′
t−1Pt−1 + 0.8Qt−1,

where Q1,2 = Q2,1 = 0.4 and t = 1, . . . , T , with T = 2000. The values t1, . . . , tl were

chosen equally spaced and ε = 0%, 1% or 5%. The jump size is the conditional

standard deviation of the corresponding elements of Yt times d for the first series

and negative d for the second series, with d = 3 or 4. The two assets have the same

jump probability and 40% of jumps are cojumps. Consequently, ε = 1% (resp. 5%)

corresponds to on average 0.7% (resp. 3.5%) of jumps on each series.

The nine unknown parameters are estimated using the approach described in the

previous section, i.e., estimation of the 2 univariate GARCH models, followed by

estimation of Q, α and β. For each parameter, we compute the estimation bias and

RMSE over 10, 000 replications. For the BIP–GARCH and BIP–cDCC, we consider

a threshold given by δ = 0.975.5

Results: The bias and RMSE of the BIP–cDCC and the benchmark QML estimator

of the parameters of the unobserved GARCH(1,1)–cDCC process Yt are shown in

Table 4. Consider first the bias and RMSE for the parameters of the univariate

5We repeated the simulation for δ = 0.95, but the resulting bias and RMSE were similar as for
δ = 0.975. Results reported in this paper are based on programs written by the authors using Ox
version 6.0 (Doornik, 2009) and G@RCH version 6.0 (Laurent, 2009).
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Table 4: Bias and RMSE of the Gaussian QML and robust estimator for the cDCC
model in presence of ε jumps of size d conditional standard deviation, with δ = 0.975
and T = 2000.

µ ω α1 β1 h Q12 α β

0.050 0.100 0.100 0.800 1.000 0.400 0.100 0.800

ε = 0% QML bias 0.001 0.008 0.000 -0.009 -0.001 -0.001 -0.001 -0.007
RMSE 0.023 0.036 0.020 0.049 0.067 0.039 0.019 0.045

Robust bias 0.001 0.008 0.005 -0.013 0.003 -0.011 -0.002 -0.006
RMSE 0.026 0.040 0.023 0.056 0.074 0.040 0.021 0.051

ε = 1% QML bias 0.020 0.028 -0.004 -0.018 0.058 -0.055 -0.010 -0.057
d = 3 RMSE 0.031 0.056 0.023 0.064 0.091 0.067 0.033 0.124

Robust bias 0.005 0.012 0.001 -0.013 0.013 -0.016 -0.007 -0.006
RMSE 0.026 0.044 0.022 0.058 0.076 0.041 0.022 0.055

ε = 1% QML bias 0.027 0.060 -0.005 -0.041 0.104 -0.092 -0.008 -0.125
d = 4 RMSE 0.035 0.098 0.029 0.098 0.128 0.101 0.043 0.203

Robust bias 0.003 0.013 0.000 -0.013 0.011 -0.016 -0.007 -0.006
RMSE 0.026 0.044 0.022 0.058 0.076 0.041 0.022 0.055

ε = 5% QML bias 0.103 0.169 -0.030 -0.079 0.300 -0.230 -0.070 -0.166
d = 3 RMSE 0.106 0.252 0.046 0.186 0.311 0.233 0.080 0.277

Robust bias 0.022 0.031 -0.018 -0.006 0.060 -0.037 -0.034 0.015
RMSE 0.034 0.073 0.030 0.079 0.100 0.053 0.042 0.094

ε = 5% QML bias 0.137 0.397 -0.059 -0.164 -0.536 -0.339 -0.084 -0.219
d = 4 RMSE 0.106 0.252 0.046 0.186 0.311 0.341 0.090 0.284

Robust bias 0.013 0.029 -0.024 0.000 0.046 -0.033 -0.039 0.026
RMSE 0.029 0.077 0.034 0.086 0.091 0.051 0.046 0.100

The bias and RMSE of the parameters underlying h1,t and h2,t are similar. To save space, we only report those for

h1,t.

GARCH model for s∗1,t. In line with the results in MY, we find that the estimation

of the GARCH parameters using the misspecified BIP–GARCH model does not

seem to create any significant bias in the estimated parameter values. Of course, we

see that in the absence of additive jumps (i.e., ε = 0%), we pay the price of a loss

of efficiency with respect to the QML estimator. But when ε = 1 or 5%, the QML

estimator is severely biased.

The last three columns of Table 4 present the results for the multivariate case. Like

in the univariate case, the estimation of the cDCC parameters using the BIP–cDCC

models does not seem to create any significant bias in the estimated parameter values

in the absence of jumps (i.e., ε = 0%). The average of the estimated parameters is
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very close to the true values. Since the innovations have a conditionally Gaussian

distribution, the Gaussian QML estimator based on the correctly specified GARCH

model is expected to have (at least asymptotically) the lowest RMSE.

The loss of efficiency of the robust estimator in the absence of additive jumps is

moderate compared to the lower bias and gain in efficiency in the presence of these

jumps. For ε = 1 or 5% of additive jumps, we find the empirical correlation of the

devolatilized returns to be a strongly biased estimate of Q1,2. Because jumps have

the opposite sign and the true correlation is 0.4, we find a negative bias of -5.5%

when ε = 1% and d = 3 and -33.9% when ε = 5% and d = 4. The persistency

parameter β also is largely underestimated. Its bias is -5.7% when ε = 1% and

d = 3 and -21.9% when ε = 5% and d = 4. When ε = 1%, the bias in the QML

estimate of α is still negligible, but for ε = 5% with d = 4, we find a bias of -8.4%.

Importantly, in all cases, the bias and RMSE of the estimates of the proposed robust

estimator described in Section 3.2 remains small in the presence of additive jumps.

5 Forecast Evaluation using the Model Confidence

Set

Our first application is on forecasting the r–step ahead daily conditional covariance

matrix of the EUR/USD and Yen/USD exchange rates over the period 2004–2009.

The model confidence set (MCS) approach of Hansen, Lunde, and Nason (2009)

is used to compare the forecasts. Given a universe of model based forecasts, the

MCS allows us to identify the subset of models that are equivalent in terms of

forecasting ability, but outperform all the other competing models. The accuracy

of the forecasts is evaluated by comparing the forecast with a high–frequency based

ex post measure of the daily covariance matrix and a robust loss function.

The next subsections present the set of competing models, the proxy of the true

but unobserved covariance, the data, the loss function, and finally the results of

our application. Following Hansen, Lunde, and Nason (2009), we set the confidence

level for the MCS to α = 0.25 and 10,000 bootstrap samples were used to obtain
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the distribution under the null of equal forecasting performance.6

Set of competing models: We consider eight MGARCH models with a constant con-

ditional mean. The first three models belong to the class of BEKK models proposed

by Engle and Kroner (1995). We consider the diagonal BEKK(1, 1), the scalar-

BEKK(1, 1) and the multivariate exponentially weighted moving average (EWMA)

model.7 The first two models are estimated by Gaussian QML while the EWMA

model does not require any parameter estimation (apart from the mean, set here to

the empirical mean). We also consider the constant conditional correlation (CCC)

model of Bollerslev (1990) and the (corrected) DCC model, with GARCH(1, 1) spec-

ifications for the conditional variances. The CCC and cDCC models are estimated

by Gaussian QML using the three step–approach described in Section 3.1 (or two–

step for the CCC). The last two models are the BIP versions of the CCC and cDCC

models. The first step is common to all three models and consists of the estimation

of N BIP–GARCH(1, 1) models with variance targeting. The second step corre-

sponds to the estimation of the correlation matrix as described in Section 3.3. We

choose δ = 0.975 for the BIP weight functions.

Proxy: We judge the performance of the competing models through the use of a

statistical loss function. The evaluation of the forecasting performance of volatility

models is challenging since the variable of interest (i.e., the covariance) is unobserv-

able and therefore the evaluation of the loss function has to rely on a proxy. We

consider three proxies based on the theory of quadratic variation of Brownian semi-

martingale with jumps processes, i.e., the realized covariance (RCov) of Andersen,

Bollerslev, Diebold, and Labys (2003), the realized bipower covariation (RBPCov)

of Barndorff-Nielsen and Shephard (2004) and the realized outlyingness weighted

covariation (ROWCov) of Boudt, Croux, and Laurent (2008). The motivation for

the choice of these proxies is that RCov estimates the total quadratic variation, while

RBPCov and ROWCov only estimate the continuous component of the quadratic

6Implementation of this test has been done using the Ox software package MULCOM of Hansen
and Lunde (2007).

7The EWMA model has been popularised by Riskmetrics (1996) and is widely used by practi-
tioners.
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variation.

Data: Our data consists of daily and 30–minute log–returns computed from the

indicative quotes provided by Olsen & Associates, on the Euro (Deutsche Mark

before 1999) and the Yen exchange rates expressed in US dollars (EUR and YEN).8

The sample period goes from January 3, 1995 to December 31, 2009. We removed

days with too many missing values and/or constant prices, as well as weekends and

holidays when trading is infrequent. The cleaned dataset spans 3819 trading days.

One trading day extends from 21.00 GMT on day t − 1 to 21.00 GMT on date t.

On equity data, Laurent, Rombouts, and Violante (2009b) find that the relative

performance of MGARCH models depends strongly on the state of the market. We

therefore distinguish between the calm market period of 2004–2006 and the turbulent

period of the credit crisis in 2007–2009. The standard deviation of the daily EUR

and YPY return is 59% and 56% in the calm period, but increases to 73% and 87%

in the turbulent period. From the daily returns, rolling estimation samples of 2303

observations are used to produce the out–of–sample r–step ahead daily covariance

forecasts, with r = 1, . . . , 10.

Loss function: In the presence of outliers (or jumps), Preminger and Franck (2007)

recommend using forecast performance evaluation criteria that are less sensitive to

extreme observations. For this reason we rely on the Entrywise 1 – (matrix) norm,

defined as follows:

Lm,t =
∑

1≤i,j≤N

|σi,j,t − hm,i,j,t| , (5.1)

where Lm,t is the Entrywise 1 - (matrix) norm of model m (for m = 1, . . . , 9) and

day t, σi,j,t and hm,i,j,t, indexed by i, j = 1, ..., N , refer respectively to the elements

of the covariance matrix proxy for day t (i.e., Σt) and covariance forecast of model

m (i.e., Hm,t).
9

8The 30–minute returns are needed to compute the proxies discussed above. Muthuswamy,
Sarkar, Low, and Terry (2001), among others, show that, because of non–synchronicity of trading,
correlations are biased toward zero if returns on foreign exchange prices are calculated at ultra
high frequencies such as five minutes. For our dataset, the correlation in the 5, 10, 15, 30 and daily
EUR and YEN returns is 26%, 30%, 31%, 32% and 34%, respectively.

9Hansen and Lunde (2006), Laurent, Rombouts, and Violante (2009a) and Patton (2009) show
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Table 5: Models that have superior forecasting performance for the RCov, RPBCov
and ROWCov of EUR/USD and Yen/USD returns in 2004–2006 and 2007–2009, as
indicated by the model confidence set approach.

Calm period: 2004-2006 Turbulent period: 2007-2009
r 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

RCov
BIP-cDCC + + + + + + + + + + + + +
BIP-CCC + + + + + + + + + +
cDCC + +
DCC + +
CCC + +
RM + +

Scalar-BEKK + +
Diag-BEKK + +

RBPCov
BIP-cDCC + + + + + + + + + + + + +
BIP-CCC + + + + + + + + + +
cDCC
DCC
CCC
RM

Scalar-BEKK
Diag-BEKK

ROWCov
BIP-cDCC + + + + + + + + + + + + + + +
BIP-CCC + + + + + + + + + +
cDCC
DCC
CCC
RM +

Scalar-BEKK
Diag-BEKK

Results: Table 5 indicates which models belonging to the set of superior forecasting

models according to the MCS test. In both the calm and turbulent market regimes,

a MGARCH model with the BIP property is selected as having superior forecasting

performance for all forecast horizons. Interestingly, in the calm period a BIP–model

without dynamics in the conditional correlations belongs consistently to the set of

superior forecasting models, i.e. the BIP–CCC. When accuracy is measured against

that the substitution of the underlying volatility by a proxy may induce a distortion in the ranking
i.e., the evaluation based on the proxy might differ from the ranking that would be obtained if the
true target was used. However, such distortion can be avoided if the loss function has a particular
functional form or when the proxy is accurate enough. Monte Carlo simulation results reported in
Laurent, Rombouts, and Violante (2009a) suggest that when the proxy of the daily covariance is
computed from high frequency returns (e.g., 30–minute returns like in our case), all loss functions
deliver the expected ranking (i.e., the one based on the true covariance) which justifies our choice.
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the RCov or RBPCov, the BIP–CCC model is even the best model for all r–day

ahead forecasts, with r < 8. Over the credit crisis (2007–2009), the BIP–cDCC

model always belongs to the set of best forecasting models. It significantly beats all

other models in forecasting the RBPCov and ROWCov at all forecast horizons, and

the RCov for horizons r > 2.

6 Economic Gains in Portfolio Allocation

Our key empirical application follows from applying the BIP model to the problem

of optimal portfolio allocation. We study an investor who adopts a volatility timing

strategy where the changes in the ex ante optimal portfolio weights are solely deter-

mined by the forecasts of the conditional covariance matrix. The optimal portfolio

allocation is supposed to be the minimum variance portfolio; the minimum variance

portfolio being the only portfolio on the efficient frontier that is independent of the

mean forecast. To make the portfolio allocation more realistic, portfolio weights are

required to be nonnegative and less than 40%.10

The portfolios are fully invested in equity belonging to the same sector. The initial

investment universe consists of all S&P 100 stocks on July 31, 2010. Stocks with

missing data at the start of the estimation period and sectors with less than five

stocks in the investment universe are removed.11 We study the portfolio perfor-

mance gains obtained by allocating the sector portfolios based on the BIP–cDCC

covariance forecasts instead of the forecasts from the baseline cDCC model, over the

period January 2004 – July 2009.12 We split up the evaluation sample in the calm

10In the webappendix we verify that relaxing such bound constraints on the portfolio weights
has little impact on the conclusions regarding the relative profitability of using the BIP–cDCC vs
cDCC covariance forecasts.

11This leads to the following sector portfolios: Consumer Discretionary (tickers: AEP, CMCSA,
ETR, F, HD, MCD, TGT, NKE, SO, TGT, TWX, DIS), Consumer Staples (MO, AVP, CL,
COST, CPB, CVS, HNZ, KO, PEP, PG, SLE, WAG, WMT), Energy (BHI, COP, CVX, DVN,
HAL, OXY, SLB, WMB, XOM), Financials (ALL, AXP, BAC, BK, C, JPM, L, MS, RF, USB,
WFC), Healthcare (ABT, AMGN, BAX, BMY, GILD, JNJ, MDT, MRK, PFE, UNH), Industrials
(BA, CAT, FDX, GD, GE, HON, LMT, MMM, NSC, RTN, UTX) and IT (AAPL, CSCO, DELL,
EMC, HPQ, INTC, IBM, MSFT, ORCL, QCOM, TXN, XRX).

12We repeated the analysis for the BIP–CCC vs CCC covariance forecasts and obtained similar
conclusions.
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period of 2004–2006 and the turbulent years 2007–2009. Forecasts of the conditional

covariance matrix at time t are based on the data from January 1994 up to t− 1.

We measure the portfolio performance in two ways. First we look at the out–of–

sample gross returns. Following Fleming, Kirby, and Ostdiek (2003), we consider the

mean and standard deviation, as well as a summary measure, denoted ∆γ, for the

relative outperformance of the BIP–cDCC method versus the cDCC method. Let pt

and p(BIP)t be the portfolio returns under the classical and BIP approach, respectively

(t = 1, . . . , T ). The value of ∆γ is such that an investor with quadratic utility

function and relative risk aversion parameter γ, is indifferent between receiving pt

and p(BIP)t − ∆γ , for t = 1, ..., T .13 Table 6 reports the mean, standard deviation

and ∆γ in annualized terms, with ∆γ computed using two different values of γ, 1

and 10.

The net return for an investor corresponds to these gross return performance mea-

sures, from which the transaction costs are deducted. As an indicator for the transac-

tion costs, we report in Table 6 also summary statistics on the right tail distribution

of the daily changes in portfolio weights, i.e. 99% quantile, maximum and kurtosis

of |w(i)t − w(i)t−|, where w(i)t is the optimal weight of asset i on day t and w(i)t− is

the weight of that asset before rebalancing at the end of day t− 1 to w(i)t.

Note first in Table 6 that the use of the BIP method has little impact on the portfolio

standard deviation. For healthcare in 2004–2006, it has a negative impact on the

average portfolio returns, while for industrials in 2004–2006, financials in 2007–2009

and IT in 2007–2009, it improves the portfolio return. For all other cases, the impact

of the covariance forecast method on the average gross returns seems to be negligible.

Focusing on the computed values of ∆γ , we see that for the turbulent period the

robust BIP allocation outperforms slightly the classical allocation, while in the calm

period, there is no evidence of dominance of one method over the other. We thus find

13More precisely, assuming the investor’s investment budget is the same every day, ∆γ is deter-
mined by the condition that

T
∑

t=1

(1 + p(BIP)t −∆γ)−
γ

2(1 + γ)
(1 + p(BIP)t −∆γ)

2 =

T
∑

t=1

(1 + pt)−
γ

2(1 + γ)
(1 + pt)

2.
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Table 6: Summary statistics on out–of–sample performance of minimum variance
portfolios based on the BIP–cDCC vs cDCC model: gross returns (annualized mean,
standard deviation and relative performance ∆γ) and portfolio turnover.

Gross return performance Turnover

cDCC BIP–cDCC ∆γ cDCC BIP–cDCC

mean SD mean SD γ = 1 γ = 10 Q99 max kurt Q99 max kurt
2004-2006
Cons.Discret. 0.12 0.10 0.11 0.10 -1.13 -1.35 0.07 0.23 37.55 0.07 0.16 16.52
Cons.Staples 0.08 0.09 0.09 0.10 0.85 0.67 0.06 0.23 57.51 0.07 0.15 14.21
Energy 0.28 0.19 0.30 0.20 1.99 0.39 0.09 0.24 30.06 0.11 0.28 18.38
Financials 0.14 0.10 0.13 0.10 -0.81 -0.68 0.09 0.36 45.80 0.12 0.31 15.30
Healthcare 0.06 0.11 0.03 0.12 -2.89 -3.53 0.13 0.35 25.87 0.08 0.17 15.69
Industrials 0.13 0.11 0.16 0.11 2.53 2.52 0.06 0.25 48.16 0.08 0.15 10.66
IT 0.04 0.13 0.03 0.14 -1.28 -1.60 0.06 0.38 198.38 0.08 0.19 15.35
2007-2009
Cons.Discret. 0.00 0.22 0.00 0.23 -0.00 -0.66 0.09 0.30 35.97 0.09 0.21 17.00
Cons.Staples -0.01 0.20 0.02 0.19 2.95 4.41 0.08 0.34 57.53 0.09 0.18 13.01
Energy -0.05 0.37 -0.04 0.37 1.63 0.97 0.12 0.39 37.42 0.14 0.32 20.94
Financials -0.27 0.46 -0.24 0.47 3.45 -1.03 0.11 0.37 55.77 0.12 0.31 21.52
Healthcare -0.01 0.21 -0.01 0.20 -0.63 0.84 0.13 0.39 37.99 0.07 0.19 16.63
Industrials -0.03 0.26 -0.03 0.26 0.27 1.11 0.10 0.37 55.02 0.10 0.24 15.00
IT 0.01 0.29 0.05 0.29 4.17 4.72 0.08 0.36 62.62 0.09 0.19 11.85

that on aggregate, the returns on the portfolios constructed using the BIP method

have similar unconditional first and second moments as when the baseline model is

used.

This does not mean that there is no profit for the investor in using the BIP pro-

cedure, since the BIP conditional covariance matrices are more stable, resulting in

lower portfolio churn and thus lower transaction costs. Indeed, we see in the last

columns of Table 6 that the maximum and the kurtosis of the portfolio turnover

are always significantly larger for the classical portfolio than for the robust portfo-

lio: the percentage difference between the maximum (kurtosis) of the turnover is

between 30 and 260% (80 and 900%). Therefore, even if both procedures have a

similar out–of–sample mean return and standard deviation, net of transaction costs,

the BIP procedure yields more profits overall.

28



7 Conclusion

We propose the BIP–cDCC model for multivariate volatility forecasting in the pres-

ence of once–off events causing large changes in prices whilst not affecting volatility

dynamics. Under this model, extremes have a bounded impact both on the pa-

rameter estimates and the volatility forecasts. In an application to forecasting the

covariance matrix of the daily returns on the EUR/USD and Yen/USD exchange

rates, the BIP model always belongs to set of superior forecasting models, and for

most forecast horizons, it is identified as the best model by the model confidence

set approach of Hansen, Lunde, and Nason (2009). We also show that for minimum

variance allocation of sector portfolios on US stocks, the BIP covariance forecasts re-

duce significantly the portfolio turnover, while not deteriorating the out–of–sample

portfolio return performance.

Throughout the paper we focused on using the BIP–GARCH(1,1) model for uni-

variate volatility forecasting. A natural extension is to consider volatility models

with leverage effects, such as the asymmetric power ARCH model of Ding, Granger,

and Engle (1993) or the GJR model of Glosten, Jagannathan, and Runkle (1993),

provided the models are adapted such that lagged returns have a bounded impact

on future volatility.

The stability of the robust multivariate volatility forecasts should be an attractive

characteristic for volatility–based economic capital determination by financial insti-

tutions. It would be interesting to compare the accuracy of downside risk estimates

calculated using the BIP covariance estimates relatively to using the baseline DCC

model.

We leave further work along these lines for future research.
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Appendix A: Reweighted Mean and Variance Es-

timators

In a high-frequency data setting, Boudt, Croux, and Laurent (2008) propose to

estimate the unconditional mean µ and variance h through a mean and variance

estimate in which local outliers receive a zero mean. The locality of the outlier

detection method is needed in order to avoid an overdetection of outliers at times

of high volatility and an underdetection when volatility is low (Boudt, Croux, and

Laurent, 2010). This method first estimates for each observation the median ab-

solute deviation madt of the returns in a window around that observation.14 The

reweighted sample mean and variance are then

µ̂ =

∑T
t=1 s

∗
t It

∑T
t=1 It

and ĥ = b0.95,1 ·

∑T
t=1(s

∗
t − µ̂)2Jt

∑T
t=1 Jt

, (7.1)

with

It = I

[

(s∗t −mediant(s
∗
t ))

2

mad2t
≤ χ2

1(95%)

]

and Jt = I

[

(s∗t − µ̂)2

mad2t
≤ χ2

1(95%)

]

,

(7.2)

and χ2
1(δ) is the δ quantile of the χ2 distribution with 1 degree of freedom and 0

otherwise. The correction factor b0.95,1 = 0.95c0.95,1 is a constant adjusting for the

bias due to the thresholding, with c0.95,1 as defined in (2.10).

Practically, the local window around every observation s∗t is the one that spans the

interval [t −K/2, t+K/2]. At the borders, when t < K/2, the interval is given by

[1, K+1] or when t > T −K/2, the interval is given by [T −K, T ]. The choice of K

must be such that the local window contains as many observations as possible while

still satisfying the condition that, approximately, the returns in the local window

that are not affected by outliers come from the same normal distribution. Ideally,

the choice of K should thus depend on the persistence of the underlying GARCH

model. Through simulation, we tried several values of K for common GARCH

14The mad of a sequence of observations x1, . . . , xn is defined as 1.486 · mediani(|xi −
medianj(xj)|), where 1.486 is a correction factor to guarantee that the mad is a consistent scale
estimator at the normal distribution.
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models. We found that, since K affects only the weights in (7.2) it is not a critical

tuning parameter. Throughout the paper, we set K = 30. A topic for further

research is to create a data-driven method for optimally selecting the length of the

local window, as in e.g. Mercurio and Spokoiny (2004).

Appendix B: Reweighted Correlation Estimators

As for the reweighed variance estimator in (7.2), the reweighted correlation estimator

proceeds in two steps. First the Spearman correlation matrix RCt is computed in

a local window around every observation S̃t. More precisely, write S̃t:1, . . . , S̃t:K+1

as the time ordered observations in the window t. Then rank each component

series within the local window. Denote the vector series containing these ranks

Lt:1, . . . , Lt:K+1. The raw Spearman correlation matrix Ct for the window around S̃t

is the sample correlation matrix of Lt:1, . . . , Lt:K+1. Moran (1948) showed that this

correlation matrix needs to be corrected as follows to ensure consistency:

SCt = 2 sin

(

1

6
πCt

)

. (7.3)

Advantages of the Spearman correlation matrix with respect to other robust cor-

relation estimators include its computational simplicity, high efficiency and outlier

robustness, as shown by Croux and Dehon (2009). The locality is needed such that

S̃ ′
tSC

−1
t S̃t is approximately chi-square distributed with N degrees of freedom (see

Subsection 3.2).

The second step is then to compute the quasi-reweighted correlation estimator:

RC =
c0.95,N
∑T

t=1 Lt

T
∑

t=1

S̃tS̃
′
tLt, (7.4)

with weights Lt = I[S̃ ′
tRC−1

t S̃t ≤ χ2
N(0.95)]. The scalar c0.95,N is as defined in (2.10).

The reweighted (RW) correlation estimator of Q̄, denoted ˆ̄QRW is given by

ˆ̄QRW = diag (RC
−1/2
11 . . . RC

−1/2
NN ) RC diag (RC

−1/2
11 . . . RC

−1/2
NN ). (7.5)
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This correlation estimate is positive semidefinite and inherits the good robustness

properties from the first step correlation estimate used to compute the weights (Lop-

uhaä, 1999).
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