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Abstract

The experience from the global financial crisis has raised serious con-
cerns about the accuracy of standard risk measures as tools for the
quantification of extreme downward risk. A key reason for this is
that risk measures are subject to model risk due, e.g., to specification
and estimation uncertainty. While the authorities would like financial
institutions to assess model risk, there is no accepted approach for
such computations. We propose a remedy for this by a general frame-
work for the computation of risk measures robust to model risk by
empirically adjusting imperfect risk forecasts by outcomes from back-
testing, considering the desirable quality of VaR models such as the
frequency, independence and magnitude of violations. We also provide
a fair comparison between the main risk models using the same metric
that corresponds to model risk required corrections.

Keywords: Model Risk, Value-at—Risk, Backtesting.
J.E.L. Classification: C50, G11, G32.

*We thank Carol Alexander, Arie Gozluklu, Monica Billio, Thomas Breuer, Massim-
iliano Caporin, Rama Cont, Christophe Hurlin, Christophe Pérignon, Michaél Rockinger,
Thierry Roncalli and Jean-Michel Zakoian for suggestions when preparing this article,
as well as Benjamin Hamidi for research assistance and joint collaborations on collateral
subjects. We thank the Global Risk Institute for support; the second author gratefully
acknowledges the support of the Economic and Social Research Council (UK) [grant num-
ber: ES/K002309/1] and the fourth author the support of the Risk Foundation Chair
Dauphine-ENSAE-Groupama “Behavioral and Household Finance, Individual and Col-
lective Risk Attitudes” (Louis Bachelier Institute). The usual disclaimer applies.



1 Introduction

Recent crises have laid bare the failures of standard risk models. High levels
of model risk caused models to underforecast risk prior to crisis events, to be
slow to react as a crisis unfolds, and then slow to reduce risk levels post—crisis.
It is as if the risk models got it wrong in all states of the world. Addressing
this problem provides the main motivation for our work. In particular, we
explicitly adjust risk forecasts for model risk by their historical performance,
so that a risk model learns from its past mistakes. While our focus is on
Value-at-Risk (VaR), the analysis applies equally to other risk measures
such as expected shortfall (ES).

While there is no single definition of model risk,! it generally relates to the
uncertainty created by not knowing perfectly the true data generating process
(DGP). This inevitably means that any practical definition is linked to such
an uncertainty and thus is context dependent. In our case, the end product is
a risk forecast, so model risk is the uncertainty in risk forecasting arising from
estimation error and the use of an incorrect model. This double uncertainty
is responsible both for the range of plausible risk estimates (see, e.g. Beder,
1995), and more generally the inability to forecast risk width acceptable
accuracy.

To formalize this, in our view a risk forecast model should meet three desir-
able criteria: the expected frequency of violations, the absence of violation
clustering and a magnitude of violations consistent with the underlying dis-
tributional assumptions. These three criteria provide the lens through which
to view our empirical results.

We can motivate our contribution by means of an example represented in
Figure 1, where, for each day in a sample of the Dow Jones (DJIA) index
over a century, we show the outcomes from applying state-of-the-art VaR
forecast methods. We also show periodically which method generated the
highest and the lowest forecasts. By highlighting the wide disparity between
the most common risk forecast methods, the figure illustrates one of the
biggest challenges faced by risk managers. Typically, the VaR does not vary
much, but when it does, it reacts sharply but belatedly to extreme returns.
The range of plausible VaR forecasts is large, where the models producing
the highest and lowest forecasts frequently change position across time. Even
right after WWII, during a relatively quiet period for financial markets, the

'Tn the finance literature, the term “model risk” frequently applies to uncertainty about
the risk factor distribution (e.g. Gibson, 2000; Jorion, 2009—a and 2009-b). Although, the
term is sometimes used in a wider sense (e.g. Derman, 1996; Crouhy et al., 1998).



most conservative VaR can be four times the most aggressive one.

Figure 1: DJIA and the range of daily 99% VaR forecasts
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As in Danielsson et al. (2011), the main conclusion from this brief analysis is
that risk managers face a large range of plausible forecast methods and their
associated model risk, having to choose between desirable criteria such as
performance, degree of conservativeness or forecast volatility. This challenge
motivates our main objective where we propose a general method for the
correction of imperfect risk estimates, whatever the risk model.

We illustrate our approach by considering events around the Lehman Broth-
ers’ collapse, as presented in Figure 2 for the period of January 1st, 2007 to
January 1st, 2009. The Figure displays peaks—over—VaR for one-year rolling
daily historical 99% VaR on the S&P 500 index.

The figure shows that the hits are excessively frequent, highly autocorrelated
and, around October 2008, far from the estimated VaR, even if it progres-
sively adjusted after the hits. This suggests that an optimal buffer would
make the VaR forecast more robust.

However, it is not trivial to calculate the buffer, after all, the properties of
hits are significantly different in terms of frequency, dependence and size,
depending both on the underlying VaR model and probability level as well



Figure 2: S&P500 negative returns and daily 99% VaR forecasts around the
2008 Lehman Brothers’s event
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as the magnitude of the buffer. A large (respectively small) buffer correction
will lead to a too conservative (too little) protection. The question for the risk
manager is then how to ex ante fix the size of this buffer, as illustrated by the
three arbitrary correction factors labelled #1, #2 or #3, on the right-hand
side y—axis in Figure 2.

In the financial literature, a number of papers have considered estimation risk
for risk models, see for instance Gibson et al., 1999; and Talay and Zheng,
2002. The issue of estimation risk for VaR has been considered for the iden-
tically and independently distributed return case by, for example, Pritsker
(1997) and Jorion (2007). Estimation risk in dynamic models has also been
studied by several authors. Berkowitz and O’Brien (2002) observe that the
usual VaR estimates are too conservative. Figlewski (2004) examines the
effect of estimation errors on the VaR by simulation. The bias of the VaR
estimator, resulting from parameter estimation and misspecified distribution,



is studied for ARCH(1) models by Bao and Ullah (2004). In the identical
and independent setting, Inui and Kijima (2005) show that the nonpara-
metric VaR estimator may have a strong positive bias when the distribution
features fat—tails. Christoffersen and Gongalves (2005) study the loss of ac-
curacy in VaR and ES due to estimation errors and constructed bootstrap
predictive confidence intervals for risk measures. Hartz et al. (2006) pro-
pose a re-sampling method based on bootstrap to correct the bias in VaR
forecasts for the Gaussian GARCH model. For GARCH models with heavy—
tailed distributions, Chan et al. (2007) derive the asymptotic distributions of
extremal quantiles. Escanciano and Olmo (2009, 2010 and 2011) study the
effects of estimation risk on backtesting procedures. They show how to cor-
rect the critical values in standard tests used, when assessing the quality of
VaR models. Gouriéroux and Zakoian (2013) quantify in a GARCH context
the effect of estimation risk on measures for estimation of portfolio credit
risk and show how to adjust risk measures to account for estimation error.
Gagliardini et al. (2012) propose estimation and granularity adjustments
for VaR, whilst Lonnbark (2010) derives adjustments of interval forecasts to
account for parameter estimation.

In the context of extreme risk measures, our work also relates to Kerkhof
et al. (2010), who first propose an incremental market risk capital charge
calibrated on the backtesting framework of the regulators. Our present work
documents the proposed methodology and complements their approach, gen-
eralizing the tests used for defining the buffer. Alexander and Sarabia (2012)
also explicitly deal with VaR model risk by quantifying VaR model risk and
propose an adjustment to regulatory capital based on a maximum relative
entropy criterion to some benchmark density. In a similar manner, Breuer
and Csiszdr (2012 and 2013) and Breuer et al. (2012) define model risk as
an amplified largest loss based on a distribution which is at a reasonable,
Mahalanobis or Kullback—Leibler, distance to a reference density.

We start with a controlled experiment, whereby we simulate an artificial long
time—series which exhibits the salient features of financial return data. We
then estimate a range of VaR forecast models with this data, both identifying
model risk and more importantly dynamically adjusting the risk forecasts
with respect to such risk.

The conclusions from this exercise lead us to a number of interesting con-
clusions. First, by dynamically adjusting for estimation bias we significantly
improve the performance of every method, suggesting that such an approach
might be valid in routine applications of risk forecasting. Second, the model
bias is large in general, and sometimes to the same order as the VaR measure
itself, and very different across methods. Finally, the bias strongly depends



upon the probability confidence level. This suggests that a commonly advo-
cated approach of probabilities shifting — whereby we estimate a model with
one probability to better estimate a VaR with a less extreme probability —
is not valid.

The Monte Carlo results motivate our main contribution, the development of
a practical method for dealing with model uncertainty. Since we do not know
the “true” model, we instead learn from history by evaluating the historical
errors in order to use them to dynamically adjust future forecasts. We reach
a range of empirical conclusions from this exercise.

1. The magnitude of corrections can sometimes be large, especially around
the 1929 and 2008 crises, ranging from 0 to 15% for some methods to
more than 100% in some circumstances;

2. The EWMA and GARCH VaR are among the preferred models, since

the minimum correction to pass main backtests are among the smallest;

3. Regardless of the model, a ten year sample period is needed to have a
fairly good idea of the magnitude of the required correction;

4. The model risk of the correction buffer can be measured and the buffer
fine—tuned according to the link between the confidence level on the
required correction. This enables risk managers to explicitly tailor the
buffer to major financial stress episodes such as the Great Depression
of 1929 or the 2008 crisis, if they choose to do so;

5. By considering multivariate indexes and portfolios, we find that the
model risk adjustment buffer is in line with the multiple &£ imposed by
regulators (from 3 to 5);

6. The general methodology can be used to gauge the plausibility of tra-
ditional handpicked stress—test scenarios.

The outline of the paper is as follows: Section 2 evaluates the extent to which
elementary model risks affect VaR estimates based on realistic simulations.
Section 3 proposes a practical method to provide VaR estimates robust to
model risk. Section 4 finally concludes, whilst the Appendix follows, outlin-
ing some description and examples of model risks and the main backtesting
methods used in the paper.



2 Analysis of estimation and specification er-
rors

Consider the best case scenario where we know the DGP but where the
sample size is small. In this case, the estimated VaR will inevitably be an
imperfect estimate of the theoretic, or true, VaR. In particular, there exists
a ¢ that makes the equality between the theoretic and empirical exact:

ThVaR (6, o) = EVaR(0, o) + ¢, (1)

where 6 denotes the estimated parameters, 0y the true parameters and «
the probability level of the VaR. The theoretic true VaR is denoted by
ThVaR(6y, ) and the estimated VaR by EVaR(6, «).

We hereafter denote the bias & by the function? bias(é, 0o, ). In this best
case scenario (when the true VaR is known), we know the bias function, and
can therefore obtain the perfect estimation adjusted VaR (PEAVaR), with
the estimated VaR (EVaR(6, a)), by:

PEAVaR (0, 6y, a) = EVaR (6, a) + bias(6, 6y, ). (2)

As a general rule, the smaller « is, the better we forecast VaR and identify
the bias function. The reason is that, for a given sample size, the number
of quantiles increases along with decreasing «, so the effective sample size
used in the forecasting exercise increases. As the probabilities become more
extreme, so does the accuracy of the VaR forecasts decrease, for example
because fewer observations are used in the estimation. Consequently, it is
harder to model the shape of the tail than the shape of the interior distri-
bution. For this reason, it might be tempting to forecast VaR slightly closer
to the center of the distribution, perhaps at o = 95%, and then use those
estimation results to get at the VaR for more extreme probability levels, like
a =99% or a = 99.9%. This is often referred to as probability shifting.

2.1 Probability shifting

We can analyze the impact of probability shifting within our framework by
defining two random probabilities, a&* and a**, so that:

{PEAVaR(é, Oy, ) = EVaR(é, &*) = ThVaR(6y, &*) (3)

EVaR(f, a**) = PEAVaR(0, 6, o) = ThVaR(6,, a),

2See the Appendices for examples of such bias functions in various contexts of model
risks.



or equivalently, with F' and F representing, respectively, the theoretic and
estimated cumulative density functions:

(oo
& =F[F (o),
with F~1(«) = EVaR(0, a) and F~(a) = ThVaR(6y, ).

If one were to use &* instead of «, the bias adjusted VaR results, whilst a**
achieves the opposite, mapping the probability corresponding to the biased
VaR, to the theoretic VaR.

It follows that if &* > a > a**, the estimated VaR is biased towards zero,
whilst if " < o < &*, it is biased towards minus infinity.

2.2 Monte Carlo examination

Many potential sources of error can significantly impact on the accuracy of
risk forecasts. The sources one is most likely to encounter in day—to—day
risk forecasting, and certainly in most academic studies, are estimation and
specification errors. For this reason, we investigate these two in detail by
means of Monte Carlo experiments.

We consider below the distribution of the errors between the poorly esti-
mated VaR and the true VaR when considering, alternatively, estimation
risk, specification uncertainty or both. We first specify a GDP from which
we generate data. We then treat the DGP as unknown and forecast VaR for
the simulated data.

As before, the true parameters are 6y, but we now also have the true param-
eters of the misspecified model, indicated by 6;, as well as its estimate 0;.
In this case, we indicate the estimated VaR by EVaR(él, «) and define the
perfect model risk adjusted VaR (denoted herein PMAVaR) by:

PMAVaR(0;, o) = EVaR(0;, a) + bias(6p, 6, ). (5)

We first present the theoretical framework related to the correction procedure
in a static setting for the sake of simplicity. However, in the subsequent em-
pirical application, we also consider the dynamic properties of our correction
procedure that is proposed at date t based on the conditional information
available at date t — 1.



2.2.1 The true model

The DGP needs to be sufficiently general to capture the salient features of
financial return data. Because we are not limited by the need to estimate a
model, we can specify a DGP that might be difficult, to the point of impossi-
ble, to estimate in small samples. The DGP we employ is a second order
Markov—switching generalized autoregressive conditionally heteroskedastic
with Student—t disturbances (hereafter denoted MS(2)-GARCH(1,1)-t)? as
in Frésard et al. (2011) in a VaR context.*

More precisely, the DGP is:
Ty = MSt + O-Stzh (6)

where the z; innovations series are independently and identically distributed
as a standard Student distribution with v degrees of freedom (z; ~ iidSt(0, 1, v)),
and 02, = w,, + a7 + B2 02, with s, € {1,2} characterizes the state of
the market, us, is the mean return and with v degrees of freedom, and where
ws, > 0, ag, >0, Bs, > 0 are the parameters of the GARCH(1,1) in the two
states, and €; = r; — 5, the return innovations with the fat tails of a Student

density with a v degree of freedom.

The state is modelled with a Markov chain whose matrix of transition proba-
bilities is defined by p;; = Pr(s; = j|s;—1 = ¢). Appropriately chosen restric-
tions on the GARCH coefficients ensure that o? is almost strictly positive.

Using this DGP, we first simulate a long artificial series of 360,000 daily
returns with estimated parameters on the daily DJIA from the 15 January,

1990 to the 20" September, 2011°. We then forecast various VaRs using
1,000 observations, and finally compute main statistics of the forecast error,

3See Hamilton and Susmel, 1994; Gray, 1996; Klaassen, 2002; Haas et al., 2004, for
more details on the process.

4As a complement (not reported here for space reasons, but available on demand in
a web Appendix), we also made use of other alternative frameworks: a Student versus a
normal density, as well as Brownian, Lévy and Hawkes processes, with the same qualitative
response with a relative model error for VaR ranging from 5 — 15% in the simplest cases
(Gaussian estimation risk with 250 observations) to as large as 200% when the process is
complex and the sample small (the case of Hawkes processes).

°The estimated parameters of the MS(2)-GARCH(1,1) model on the DJI Index are
wp = 3.1699¢7%%6 3, = 0.90801, a; = 0.0733081, wy = 2.509¢799° By = 0.10453, ap =
0.0064734, p1 = 0.00, pe = 0.00, v = 5.56, p11 = 0.99654 and poe = 0.99328. Bauwens et
al. (2010) obtain approximately the same results on the S&P. This estimation is crucial
since the transition probabilities between states and auto-regressive parameters both affect
the persistence of the simulated processes. Our estimates are here very similar to those
exhibited in the literature (e.g., Bauwens et al., 2010; Billio et al., 2012; Frésard et al.,
2011). Moreover, when artificially considering different probabilities related to the second



measured by differences between the asymptotic VaR (computed with the
true simulated DGP on 360,000 observations) and empirical ones recovered
from limited samples.

2.2.2 Misspecification and a parameter estimation uncertainty

Our focus is on the annualized daily 95%, 99% and 99.5% VaR. Table 1
illustrates the model risk of VaR estimates, defined as the implication of
model misspecification and a parameter estimation uncertainty. We examine
this model risk by comparing simulations and estimates corresponding to a
normal GARCH(1,1) and a MS(2)-GARCH(1,1)-t. The columns represent
respectively the average adjusted VaR according to specification and/or es-
timation errors, the theoretic VaR, the average, the minimum and maximum
values of the adjustment terms. Note that a negative adjustment term in-
dicates that the estimated VaR (which is a negative return) should be more
conservative (more negative).

We present the estimation bias (bias(fy, 0, «)), in Panel A of Table 1, when
we simulate a simple model (Normal GARCH(1,1)) and use the appropriate
methodology for computing the VaR (Normal GARCH VaR). This bias arises
only due to the small estimation sample size (1,000) and is zero for the full
360,000 sized sample. However, the dispersion of this estimation bias is quite
large since the minimum and the maximum values of the bias (or adjustment
term) represent about 50% of the true VaR. For example, with o = 99%, the
minimum and maximum biases are respectively equal to -33% and +32% for

a true VaR of -60%.

The specification bias (bias(f, 01, «)) is presented in Panel B of Table 1,
where the quantiles were modelled by a GARCH(1,1) VaR. Within this spe-
cific illustration, the risk model is fully explained by the discrepancy between
the DGP and the assumed simple risk model used (since the parameters are
here known and the estimation bias is zero by definition); the specification
bias is thus constant and depends upon the choice of the risk model specifica-
tion. The average specification bias is large here; it is negative and increases
in absolute terms with «, which indicates that extreme risks of the MS(2)-
GARCH(1,1)-t DGP are generally underestimated by the GARCH(1,1) para-
metric VaR model.

state, we find the same qualitative results in what we are interested in: model risk of
risk models. Last but not least, when we have adopted other representations of financial
returns (either using processes or densities), we again reach the same order of magnitude
of the worst errors of forecasting (additional results available upon request).
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Table 1: Conditional simulated errors associated with the 95%, 99% and

99.5% VaR: GARCH(1,1) versus MS(2)-GARCH(1,1)-t

pair Panel A. GARCH(1,1) DGP and GARCH(1,1) VaR
with Estimation Error
Mean Perfect Mean Median Min. Max.
Probability  Estimated VaR VaR Bias Bias Bias Bias
o = 95.00% -36.16% -36.16% .00% .02% -19.53%  19.60%
o = 99.00% -59.70% -59.70% .00% .04% -32.66%  32.02%
o = 99.50% -70.99% -70.99% .00% .06% -38.35%  38.03%
Panel B. MS(2)-GARCH(1,1)-t DGP and GARCH(1,1) VaR
with Specification Error
Mean Perfect Mean Median Min. Max.
Probability  Estimated VaR VaR Bias Bias Bias Bias
o = 95.00% -30.78% -36.16% -5.38% -5.38% -5.38% -5.38%
o = 99.00% -43.83% -59.70% -15.87% -15.87% -15.87% -15.87T%
o = 99.50% -48.61% -70.99% -22.38% -22.38% -22.38% -22.38%
Panel C. MS(2)-GARCH(1,1)-t DGP and GARCH(1,1) VaR
with Specification and Estimation Errors
Mean Perfect Mean Median Min. Max.
Probability  Estimated VaR VaR Bias Bias Bias Bias
o = 95.00% -28.97% -36.16% -7.19% -8.83% -21.70% 18.99%
o = 99.00% -41.28% -59.70% -18.42% -20.76% -38.88%  18.02%
o = 99.50% -45.78% -70.99% -25.20% -27.79% -47.84%  15.03%

Daily DJIA index from the 15¢ January, 1900 to the 20*! September, 2011. These statistics were
computed with the results of 360,000 simulated series of 1,000 daily returns according to a specific DGP

(rescaled GARCH(1,1) for Panel A and MS(2)-GARCH(1,1)-t for Panels B and C) using an annualized
Normal GARCH VaR (in all Panels). The columns represent, respectively, the average adjusted VaR
according to specification and/or estimation errors, the theoretical VaR, the average, the minimum and
the maximum value of the adjustment terms. A negative adjustment term indicates that the estimated
VaR (negative return) should be more conservative (more negative). Panel A presents GARCH(1,1) DGP
and/or estimated GARCH VaR; Panel B relates to a MS(2)-GARCH(1,1) DGP with estimated GARCH
VaR; Panel C refers to an estimated MS(2)-GARCH(1,1) DGP with results from an estimated GARCH
VaR.

The estimation and specification biases are captured simultaneously in Panel
C. These components of model risk are jointly considered and, in the worst
cases, they merely add up in an independent manner. We compute the
global error — denoted bias(fy, 61, él, a) in its most general formulation —
as the difference between the true VaR and the estimated VaR according to a
misspecified VaR model estimated on a limited sample. As in Panel B, where

11



a normal GARCH(1,1) VaR is used with a simulated MS(2)-GARCH(1,1)-t,
the average bias is negative and increases in absolute terms with «. The
mean errors are thus equivalent to the specification bias component, but the
dispersion of the model risk realizations is inflated by the estimation bias.

2.2.3 Probability shifting

We illustrate the impact of probability shifting and model risk in Table 2,
which shows the two modified probability levels a&* and a**. The former is
associated to the true density and corresponds to the (mis-)estimated (1—a)-
VaR, whilst the latter, associated to the estimated VaR, corresponds to the
(1 — a)-VaR without model error.

The gap between a* and « can be interpreted as a measure of the model risk
of the risk model. The gap between a™ and « can also be analyzed as the
probability shift that we should apply using a specific model of VaR to reach
the true VaR.

This alternative representation of the model risk of risk models shows that
a** is often unreachable and cannot be used for correcting the estimated VaR.
For instance, the maximum associated with the 99.5% VaR in Panel C has
to be superior to 100%, which cannot in practice be discriminated from the
maximum, i.e. when associated with the 100% probability. More generally,
a** is frequently superior to «, (and &* generally inferior to ) which can be
interpreted as an under—estimation of the risk using the proposed model of
VaR (the estimated VaR is too aggressive).

This suggests that the recent call of some authorities for more extreme quan-
tiles (see, e.g. FSA, 2006), i.e. VaR 99.5% or 99.9%, is not warranted since
in some cases the real VaR appears below the worst estimated return.

Finally, our results show, surprisingly, that the mean bias is not a simple
increasing function of the VaR and, accordingly, of the level of probability
associated to the VaR. The expected adjustment associated to the 99.5%
(99%) probability level is, for instance, four (two) times larger than the
expected adjustment associated to the 95% probability level and represents
an increase of nearly 15% (10%). The relation between the model risk and
the probability associated to the VaR is not linear and depends on several
components.

The implemented estimated VaR should be corrected by an adjustment corre-
sponding to the global bias linked to the potential model risk error. However,
the true perfect VaR is generally unknown by definition. The proposed ad-
justments are thus impossible to quantify accurately outside a pure academic

12



simulation exercise.

Table 2: Probability shifts associated with 95%, 99% and 99.5% annualized
VaR: GARCH(1,1) versus MS(2)-GARCH(1,1) quantiles

Probability a* associated Probability a** associated
to the true density corresponding to the biased empirical density
to the (mis-)estimated VaR corresponding to the perfect VaR

Panel A. GARCH(1,1) DGP and GARCH(1,1) VaR
with Estimation Error

Estimated Mean  Median Min Max Mean  Median Min Max
VaR Shift Shift Shift Shift Shift Shift Shift Shift

a=095.00% 94.19% 94.24% 90.37% 99.31% 94.51% 94.26% 94.36% 99.88%
a=199.00% 98.92% 98.95% 96.83% 99.92% 99.05% 99.08% 98.49%  99.99%
a=99.50% 99.25% 99.38% 98.71% 99.97% 99.47% 99.09% 99.98%  N.R.

Panel B. MS(2)-GARCH(1,1)-t DGP and GARCH(1,1) VaR
with Specification Error

Estimated Mean  Median Min Max Mean  Median Min Max
VaR Shift Shift Shift Shift Shift Shift Shift Shift

a=95.00% 95.81% 95.81% 95.81% 95.81% 97.29% 97.29% 97.29% 97.29%
a=99.00% 98.64% 98.64% 98.64% 98.64% 99.92% 99.92% 99.92% 99.92%
a=199.50% 99.07% 99.07% 99.07% 99.07% 99.99% 99.99% 99.99%  99.99%

Panel C. MS(2)-GARCH(1,1)-t DGP and GARCH(1,1) VaR
with Specification and Estimation Errors

Estimated Mean  Median Min Max Mean  Median Min Max
VaR Shift Shift Shift Shift Shift Shift Shift Shift

a=95.00% 94.15% 94.29% 82.43% 99.44% 97.44% 98.47% 85.69%  N.R.
a=99.00% 97.711% 97.94% 89.81% 99.88% 99.78% 99.98% 96.27%  N.R.
a=99.50% 98.35% 98.56% 91.71% 99.92% 99.93%  N.R. 98.32%  N.R.

Daily DJIA index from the 1% January, 1900 to the 20" September, 2011. These statistics were computed
with the results of 360,000 simulated series of 1,000 daily returns according to a specific DGP (rescaled
GARCH(1,1) for Panel A and MS(2)-GARCH(1,1)-t for Panels B and C) using an annualized Normal
GARCH VaR (in all Panels). The columns represent, respectively, the average Estimated VaR according
to specification and/or estimation errors, the mean, the minimum and the maximum of the modified
probability level &*, the mean, the minimum and the maximum of the modified probability level a**.
The letters N.R. stand for “Not Reached”, i.e. condition on bounds is not met even for 100.00%. Panel
A presents GARCH(1,1) DGP and/or estimated GARCH VaR; Panel B relates to a MS(2)-GARCH(1,1)
DGP with estimated GARCH VaR; Panel C refers to an estimated MS(2)-GARCH(1,1) DGP with results
from an estimated GARCH VaR.
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3 An economic valuation of model risk

While the illustration above is focused on the controlled experiment where the
modeller knows the true model, in reality the true is not known. To address
this, we propose a practical method for dealing with model uncertainty, that
makes use of past historical errors related to specific estimated models. While
it is not possible to optimally adjust for biases, we can approximate them
by adjusting the VaR forecasts by the model’s historical performance. More
concretely, historical errors are used to adjust future forecasts by identifying
the minimum correction factor needed to pass backtest criteria.

We first define the imperfect model adjusted VaR (IMAVaR) as:
IMAVaR (0, o) = EVaR(0y, ) + adj(6y, 61, 61, ), (7)

where EVaR(+) is an estimated VaR with a specific risk model, 0, are model
parameters estimated with 7" observations, and adj(6y, 01, 61, &) the minimum
VaR adjustment for the risk model, so that:

IMAVaR (6, a, n) = VaR(a)*}, 8
aR(0,a,n) = sup {VaR(a)"} (8)
VaR € R

where the symbol R refers to real numbers set, VaR(-)* is a set of VaRs, from
a model, and IMAVaR(-) is the lowest acceptable VaR, as perhaps identified
by the authorities.

The better the VaR model and the lower the minimum required adjustment
and vice—versa. The next step is to make explicit the process that defines
the limit of VaR that bounds the IMAVaR.

3.1 General backtest procedures

A variety of tests have been proposed in the literature to gauge the accuracy
of VaR estimates. In our view, there are three desirable properties that
should be met by a risk model: the expected frequency of violations, the
absence of violation clustering and the consistency of exception magnitudes
to the underlying statistical model in the parametetric case.

3.1.1 Frequency

The unconditional coverage test (Kupiec, 1995) is based on comparing the
observed number of violations to the expected®. The hit variable, obtained

6Note that the Basel “traffic light” backtesting framework is directly inspired by this
unconditional coverage test. Escanciano and Pei (2012) show, however, that this uncon-
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from the ex post observation of EVaR(+) violations for threshold v and time
t, denoted IFVaR(q), is defined as:

EVaR(), ~ | lifr, < — EVaR(é, )1
A (a) =

0 otherwise,

where r; is the return at time ¢, with ¢t = [1,2,...,T].
If we assume that I7V*R(.) is iid, then, under the unconditional coverage
hypothesis (Kupiec, 1995), the total number of VaR exceptions, denoted
Hit?V*® (@), follows a binomial distribution (Christoffersen, 1998), denoted

B(T, «a):

T

Hit EVaR( ) Z IEVaR( ) ~ B(T, ). 9)

Under the null hypothesis, the hkehhood ratio, LRuc, has the asymptotic
distribution:

LRuck ™ @ _ 9 {log [&Tf(l — aT_T’)] — log [OzTI(l — aT_T’)]} A x(1),(10)

where the symbol % denotes the convergence in distribution of the test statis-
tic, Tr =T x E [I EVaR( )} is the number of exceptions and & = T7/T is the

unconditional coverage.

3.1.2 Independence
Christoffersen (1998) proposed a test for the independence of violations:

LRind"""@ = 2 [log LItEvaR(a)(Wm, m11) — log LI;EWR(O()(W W)] . X (1),
(11)

where m; = Pr [IfV*R (o) = jIIF'PR = i] is a Markov chain that reflects the
existence of an order 1 memory in the process IPVaR(a), LT (@) (g1 myq) =
(1 — mop)ordio(1 — 7y;)on{! is thus the likelihood under the hypothesis
of the first-order Markov dependence, L* VaR(a)(w, ) is the likelihood under
the hypothesis of independence, such as my; = m; = 7, with T}; the number
of observations in the state j for the current period and at state i for the
previous period, mo1 = To1/(Too + To1), m1 = Ti1/(Tio + T11) and © =
(Tor + 1)/ T.

ditional test is always inconsistent in detecting non—optimal VaR forecasts based on the
historical method. In the following, nevertheless, we consider for our adjustment proce-
dure three of the main tests (including the unconditional coverage test), as well as their
bootstrapped corrected versions.
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3.1.3 Magnitude

A third class of tests focuses on the magnitude of the losses experienced when
VaR limits are violated. While this is not relevant for methods such as histor-
ical simulation, it provides a useful evaluation of the parametric approaches.
Berkowitz (2001), for instance, proposes a hypothesis test for determining
whether the magnitudes of observed VaR exceptions are consistent with the
underlying VaR model, such as:

LRmag"* = 2 [L34 (1, 0) — L2 (0,1)] 5 12(2), (12)
where ;11 is the magnitude variable of the observed VaR exceptions, y and
o are unconditional mean and standard deviation of ;. series, and where:

g = 1 (a)—
Lgl;rg <'u’ U) o E{%H:O} log {1 - {%}}
+ Sy {3 log(2mo?) — L og {o {Teiu L

For both unconditional and conditional coverage tests, Escanciano and Olmo
(2009, 2010 and 2011) alternatively approximate the critical values of these
tests by using a sub—sampling bootstrap methodology, since they show that
the coverage VaR backtest is affected by model misspecification.

3.2 A desirable VaR and the backtests

Under the Hy hypothesis, a desirable VaR passes each of these three test
criteria:

( LRuch™ @ 4 x?(1) for the hit test;

LRindeﬂR(')(a) % %2(1) for the independence test; (13)

L LRmagt%“(a) S x%(2) for the exception magnitude test.

We now have to search for the minimal adjustment value ¢* that allows us to
pass all the tests (one-by—one or jointly). For a given VaR forecast and the
bounding range for the tests above, we can obtain the I M AV a R that respects
conditions (10), (11) and/or (12) (or their sub-sampled versions). More pre-

cisely, given a sequence of predictions VaRt(é, a):t=11,--- ,T]}, we con-

struct the set of values ¢ € R such that the sequence {VaRt(é, a)+q:t=
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[1,---,T]} passes several backtests. If we denote the set of accepted adjust-
ments by Ar(a), the optimal adjustment is given by:”

¢ = arg win, {q}. (14)
qE€AT ()

We use a numerical optimisation technique to solve the program (14): During
the adjustment process, we search for the optimal adjustment, starting with
a large negative value of ¢*, increasing it slowly, until the adjusted VaR allows
us to pass all the tests.®

The program (14) gives the optimal value of adjustment of the imperfect VaR
estimation to become a desirable VaR. This means that the H, hypothesis
is true for the selected backtest method, so that the test statistic is lower
than critical values for all tests at the threshold «. In what follows, in order
to distinguish the effect of each test, we provide each correction separately,
corresponding to each of the tests taken alone.”

As a first illustration, Figure 3 provides the minimum adjustments (errors),
denoted ¢* as solutions of the program (14). We first only consider the hit
test, for the historical, the Gaussian and the GARCH VaRs computed on
the DJIA over one century of daily data. The figure represents the minimal
adjustment (in a percentage of the underlying VaR) necessary to respect the
hit ratio criteria according to the VaR level of confidence (95% to 99.5%).
This minimal adjustment is here considered as a proxy for the economic value
of the model risk; it is expressed as a proportion of the observed average VaR.

In other words, we show the minimal constant that should be added to the
quantile estimation for reaching a VaR sequence that passes the hit test
at all times (here with full information at time 7°). We can see that the
corrections range from (almost) 0 to 140% and increase with the quantile.
The comparison between the three methods favors the GARCH method, since
the error is lower for all quantiles and the difference between methods (with

"On a theoretical basis, A7 () might, of course, be empty and gr can be positive. How-
ever, as the sample gets large, these two situations are very unlikely since some negative
errors might soon appear (please see Figure 4 below).

8We used a looped grid-search algorithm, adding successively a small increment on the
top of the VaR (+.1% of the EVaR at each step of the loop), starting from the maximum
positive value and increasing until the test is finally passed at a given probability threshold.

9A generalization of the basic procedure allows the risk manager for sim-
ple time—varying corrections, where the original sequence is modified as

{VaRtl(él,a)Jrql sty =11, T, ,VaRtk(ék,oz) +ap:tp=1k,-- Th+k— 1],---},
and the optimization is done in all the arguments (q1,--- , gk, --) with the optimal ad-
justment at the end being the maximum of the sequence (g1, -+, qg, - - ).
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Figure 3: Minimum model risk adjustment factor for the hit test associated
with historical, Gaussian and GARCH VaRs on the DJIA, for a range of
probabilities

—— Historical
Normal
GARCH

“%8.0% 95.5% 96.0% 96.59% 97.09% ©97.5% 98.0% 98.5% 99.0% 99.5%
Daily DJIA index from the 15t January, 1900 to the 20" September, 2011. This figure represents on the
y—axis the minimal adjustment (in a percentage of the underlying VaR) necessary to respect the hit ratio
criterion according to the VaR level of confidence (x—axis). This minimal adjustment is here considered

as a prozy of the economic value of the model risk; it is expressed as a proportion of the observed average
VaR. The historical VaR is here computed on a weekly horizon as an empirical quantile using 5 years of
past returns. The Gaussian and the GARCH VaRs are {161’6 computed on a weekly horizon as a parametric
quantile using 5 years of past returns to estimate the parameters.

full information on the total sample) is quite similar and rather independent
of the confidence level.

3.3 VaR model comparisons

We apply the general adjustment method presented above, obtained for the
daily DJIA index from January 1st, 1900 until March 2nd, 2011 (29,002 daily
returns). We use a moving window of four years (1,040 daily returns) to re—
estimate parameters dynamically for the various methods. Forecasted VaR
are computed dynamically for each method for the final 29,957 days (about
108 years). The out—of-sample exercise consists of a rolling forecast scheme
with a window of four years (1,040 daily returns) to re—estimate parameters
dynamically. Then, we use one year of out—of-sample daily forecasts to
calibrate the correction based on the backtesting procedures. The backtesting
experiment to correct the risk model of VaR estimates is then based on a ratio
of the out-of-sample to in—sample size equal to .24, i.e. 250/1,040), which
is sufficiently close to zero, as required for a valid out—of-sample exercise as
shown by West (1996), McCracken (2000), Escanciano and Olmo (2010), and
Escanciano and Pei (2012). This comparison considers daily estimation of
the 95%, 99% and 99.5% conditional VaR.
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This leaves the choice of the VaR forecast method. While there is a large
number of techniques that could be used, we restrict ourselves to the most
common in practice, in particular historical simulation and several paramet-
ric approaches based on Gaussian or Student—t return distributions, as well
as the Cornish—Fisher VaR; see Cornish and Fisher, 1937; Favre and Galeano,
2002). We also employ three dynamic methods, EWMA, GARCH(1,1) and
CAViaR (Engle and Manganelli, 2004). Finally, we complement these meth-
ods by using two extreme densities for the returns such as the GEV distri-
bution and the GPD (see e.g., Engle and Manganelli, 2001).

Figure 4 shows the optimal adjustment factor for the various risk models for a
95% VaR estimated with the DJIA, in particular the daily correction factors
that pass the hit test over the past year of daily returns (over the period from
t —250 to t). The magnitude can sometimes be large (specifically around the
1929 and 2008 crises), ranging from 0 to 15% EWMA or to more than 100%
in some circumstances (for the Cornish-Fisher VaR). We also see that the
most extreme VaR violations happened during the Great Depression for all
measures. Dynamic measures, such as EWMA, GARCH and CAViaR, also
demonstrate some superiority over unconditional parametric methodologies.

Figure 4: Dynamic optimal adjustment on the daily 95% VaR
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Daily DJIA index from the 1% January, 1900 to the 20" September, 2011. We use a moving window of
four years (1,040 daily returns) to re-estimate parameters dynamically for the various methods.
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Figure 5 illustrates the evolution of the maximum required corrections for all
VaR methods under consideration (maxima of the historical correction record
needed from January 1st, 1900 to the current date t, which were already
represented in Figure 4)!°. These corrections are for the hit test, from the
general program aiming to correct today’s VaR with the historical maximum
of the minimum correction that has been necessary since the beginning of
the series (expressed here in relative terms compared to the level of VaR).

Figure 5: Optimal dynamic absolute value of minimum negative adjustments
for the hit test for different methods and the 95% VaR

5.0% -I | | " Historical ' ' 1
0.0%1907 19I22 19I36 19I51 19I66 19I81 19I96 2011
5.0% Normal 5.0% Student

0.0% 0.00 be=—— ’
5.0% Cornish-Fisher 5.0% RiskMetrics

0.0% 0.0%

5.0% GARCH 5 0% CAViaR

0.0% 0.0% -

5.0% GEV 5.0% GPD

0.0% 0.0%

1908 1933 1959 1985 2011 1008 1933 1959 1985 2011

Daily DJIA index from the 15¢ January, 1900 to the 20t September, 2011. We use a moving window of
four years (1,040 daily returns) to re-estimate parameters dynamically for the various methods.

Figure 6 illustrates the minimum dynamic adjustment required for passing
the hit test for a randomly chosen first date of implementation. More pre-
cisely, the exercise consists of choosing a first date and then computing
the dynamic adjustment until the end of the sample; repeating this exer-
cise 30,000 times, whilst ultimately keeping, for each horizon, the minimum
correction obtained. The optimal adjustments are here expressed in terms

0We did the same estimation and backtesting with a 10-year sample for VaR. We
obtained the same qualitative results and saw that the choice of the size for VaR estimation
is not crucial in our case. The results are available on demand.
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of a percentage of their maximum value over the whole sample. For each
horizon (x-axis in Figure 6), the correction (on the y—axis) thus corresponds
to the worst case scenario, i.e. the smallest correction required in the various
samples of the same horizon).

The figure shows that, depending on the VaR method, the time period length
for having almost all of the maximum correction factors varies from 18 years
(GEV) to 46 years (CAViaR). Moreover, regardless of the model, the major
part (80% or so) of the correction factors is reached after 10 years. This
means that, whatever the VaR model, most of the greatest surprises have
been faced after a decade of history (even in the worst scenario when the
sample is amongst the least turbulent ones). In other words, at least ten
years are needed to have a fairly good idea of the magnitude of the required
correction factors.

Figure 6: Optimal dynamic relative adjustment for the hit test for different
starting dates and 95% VaR by horizon (in years)

100% . - - -
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Daily DJIA index from the 1% January, 1900 to the 20*" September, 2011. We use a moving window
of four years (1,040 daily returns) to dynamically re—estimate parameters for the various methods. This
figure illustrates the dynamic negative adjustment required for passing the hit test (see Figure 4), hav-
ing randomly chosen the first date of implementation. Optimal relative negative adjustments are here
expressed in terms of percentage of their maximum value over the whole sample.

We next consider the three main qualities of VaR models as a generaliza-

tion of the approach by Kerkhof et al. (2010). Table 3 reports the various
minimum required corrections related to the three main categories of tests,
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together with their Escanciano and Olmo (2009, 2010 and 2011) bootstrapped
corrected versions. We first note that the hit test is less permissive when the
bootstrapped critical values are used, whilst the tests of independence and
magnitude impose very severe corrections (to the order of 100% in relative
terms for some tests).

Table 3: Minimum model risk for 95% daily VaR models for various validity
tests with a 5% confidence level

Method Mean VaR q, g’{ 4, g; 4, QZ

Historical -1.60% -2.61% -2.03% -4.85% -3.24% -3.10% -5.90%
Normal -1.68% -2.66% -1.86% -4.62% -2.76% -2.76% -5.49%
Student -1.89% -2.49% -1.86% -4.25% -2.85% -3.11% -6.30%
CF -1.26% -8.29% -7.48% -8.40% -8.86% -8.40% -8.86%
EWMA -1.59% -98%  -.65% -2.03% -1.02% -1.02% -2.89%
GARCH -1.61% -1.13%  -.96%  -2.57T%  -1.15%  -1.20% -2.46%
CAViaR -1.66% -1.87% -1.55% -2.59% -2.22% -2.08% -2.56%
GEV -1.84% -2.42%  -1.99% -4.47% -2.99% -2.80% -6.97%
GPD -2.11% -2.35% -1.67% -4.43% -2.63% -2.71% -6.51%

Daily DJIA index from the 15% January, 1900 to the 20" September, 2011. We use a
moving window of four years (1,040 daily returns) to dynamically re—estimate parameters
for the various methods. The variable ¢ L refers to the hit test; q, to the independence

test; g, to the magnitude test; and 4 ,_g;, QZ correspond to their resampling versions,
following Escanciano and Olmo (2009, 2010 and 2011).

According to the the unconditional coverage test at a 5% level, EWMA is the
best model for estimating the DJIA index 95% VaR, followed by GARCH and
then GEV. The independence test favours the conditional methods, with the
best result for the GARCH model. Finally, when considering the magnitude
of the violations — the most severe test — once again the dynamic measures
show some superiority, whilst the extreme density VaR exhibits weakness.

3.4 Generalized model risk of model risk

Finally, we compare our method with classical stress-test exercises. We
first present the extent to which the required calibrated correction factors
can provide an insurance against major historical financial crises. Then, we
compare the correction factors implied by the various backtests to correct
the model risk of risk models, to a typical stress—test scenario.
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Three implicit levels of confidence are required: the probability level of the
VaR under consideration, the thresholds in the various tests applied for com-
puting the required correction and, finally, the degree of confidence we want
to put on the solidity of the buffer. Typically, a high probability VaR focus
will increase the model risk, whilst a more severe test level leads to a lower
risk. Consequently, a high incremental buffer leads to a high protection
against the model risk that is realized during extreme events on the market.
By contrast, a reduced buffer decreases the insurance against these major
turbulent episodes and, then, ultimately increases failures of (corrected) risk
models.

Figure 7 below illustrates this link between the level of the buffer, here trans-
lated into protection against the more severe historical crises, and the degree
of confidence associated to the buffer. The Figure represents the cumulative
density functions of required adjustments (in the last century of the DJIA)
for, respectively, the historical and GARCH(1,1) VaR at a 95% confidence
level, with a threshold for the hit test fixed at 5%. The series of dates stand
for years corresponding to the largest exceptions for the two VaR methods
for certain levels of confidence (on the y—axis) and related corrections (on
the x—axis). We note here that the GARCH VaR leads to smaller corrections
in general. We also see that if we accept a 5% model risk, we are, unsur-
prisingly, not protected anymore against the 5% biggest shocks in the data
(such as, for instance, those of 1929, 1930, 2008 and 2009 for the historical
method).

We then compare the correction applied to assess the robustness of risk esti-
mates with the correction implied by a typical stress test exercise for usual
portfolio profiles by imposing handpicked shocks for each investment class.
We provide these comparisons in terms of factor k used by regulators for
determining capital (k being between 3 and 5).

Thus, we first present in Table 4 (Panel A and B) the various (model risk
free) minimum corrections corresponding to the three tests (frequency, inde-
pendence and magnitude) at a 5% confidence level for a 95% GARCH VaR
applied to financial series of daily return on indexes and profiled portfolios on
the period from December 31st, 1986 to November 28th, 2011. We consider
four asset classes as well as three investment profiles combining these asset
classes (defensive, balanced and aggressive portfolios).!!

1 For the bonds, we use the “Merrill Lynch U.S. Treasuries/Agencies-Master AAA”
index before 01/01/1998 and the “J.P. Morgan EMU Global Aggregate Bond AAA All
Maturities” after; for the equity class we use a composite index “95% MSCI Europe Index
+ 5% MSCI World Index”; for the real estate class we get the “European Real Estate
Investment and Services Index” and for commodity, the “CRB Spot Index”.
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Figure 7: The empirical cumulative density function of optimal adjustment
values for the hit test of a 95% daily historical and GARCH VaR
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four years (1,040 daily returns) for computing the VaR. The threshold for the hit test is here fixed at 5%
and we use a Gaussian kernel smoothing density (see Bowman and Azzalini, 1997).
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We express the outcomes as a percentage of VaR in Table 4 (Panel A), whilst
presenting them as k ratios of corrected VaR out of estimated VaR in Panel
B of Table 4. The correction factors in Panel A of Table 4 for single indexes
range from -3.65% (for ¢, — magnitude correction for the commodity index)
to -63.83% (for Q; — bootstrapped magnitude correction for the real estate
index). For the various profiles, we see that the correction factor is lower
than 1% for the defensive profile and goes to 10% or so for the aggressive
one (and to -35.05% when considering the most severe test of magnitude).
When these correction factors are expressed in terms of k ratios in Panel B
of Table 4, they range from 1.01 to 3.66 which is in line with the official &k
ratio between 3 and 5.

We can now compare the correction factors, calibrated based on our frame-
work, with a standard stress—test approach supposing some typical shocks on
various asset classes. As underlined by Breuer and Csiszar (2012), stress tests
with hand—picked scenarios are subject to two significant criticisms. First,
arbitrary severe scenarios may be too implausible. Second, some other stress
scenarios leave open the question of whether there are more severe scenarios
of similar plausibility. If the considered scenarios are harmless, either because
stress testers lack proficiency or wish to hide risks, stress tests convey a feel-
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ing of safety which might be false. If they are merely unrealistic, they lead
falsely to excessively high capital. Our proposed strategy can help to gauge
the severity (and plausibility) of an ad hoc handpicked specific scenario.

Focusing indeed on the k ratios, Panel C of Table 4 reports the implied
corrections on annual 95% GARCH VaR in the case of a hypothetical stress.
With the given intensity of shocks considered here'? (-30% for the equity
index, -40% for the real estate, -30% for commodity and -20% for bonds
over a one—year horizon), k ratios vary from 1.90 (for ¢ g, - independence
correction for the equity index) to 4.99 (for g, — magnitude test for the real
estate index) for the single indexes, and from 1.54 (for g, - independence
correction for the balanced profile) to 6.10 (for g, — magmtude test for the
aggressive portfolio).

If we now compare the results in Panel C of Table 4 (ad hoc stress tests) to
those in Panel B of Table 4 (calibrated empirical corrections), the arbitrary
implied corrections of the stress test scenarios appear to be far more severe
for almost all indexes and portfolios (except for the balanced one and the
independence test). We thus conclude that this illustrative stress-test is
very conservative. In other words, because k ratios are almost higher in
Panel C of Table 4 than in Panel B of Table 4 (on average by 80%), this
stress—test seems to be relatively robust to the impact of model risk for the
risky assets.

12The amplitude of the shocks is directly inspired from recommendations of the Com-
mittee of European Insurance and Occupational Pensions Supervisors (CEIOPS).
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Table 4: Minimum model risk for a 95% GARCH-VaR, k ratio model risk
confidence levels for a 95% GARCH-VaR and 95% stress—VaR for 5% validity

tests on various portfolios

Portfolio q, q 4, q; 4q, q,
Panel A. Minimum annualized model risk for a 95% GARCH-VaR

Equity -10.15%  -7.14%  -9.86% -15.12% -44.80% -16.44%
Real estate -12.65% -10.32% -16.53% -18.93% -63.83% -25.03%
Commodity -6.39%  -6.25%  -5.29%  -6.99% -13.76% -3.65%
Bond -9.89%  -9.62% -10.27% -10.54% -18.44% -13.62%
Defensive profile -.08% -.08% 00% -21%  -1.04%  -.26%
Balanced profile  -4.63%  -4.36%  -5.88%  -6.52% -15.79% -8.74%
Aggressive profile -9.28%  -8.38%  -8.52% -11.62% -35.05% -12.72%

Panel B. Minimum k ratio model risk confidence levels for a 95% GARCH-VaR

Equity 1.35 1.25 1.34 1.53 2.56 1.57
Real estate 1.40 1.33 1.53 1.60 3.03 1.80
Commodity 1.65 1.64 1.54 1.72 2.41 1.37
Bond 2.43 2.39 2.48 2.52 3.66 2.97
Defensive profile 1.15 1.15 1.01 1.40 3.00 1.50
Balanced profile 1.45 1.42 1.57 1.63 2.52 1.84
Aggressive profile 1.42 1.38 1.38 1.52 2.58 1.57
Panel C. Minimum k ratio model risk confidence levels of 95% stress—VaR
Equity 2.54 2.25 1.90 2.71 4.81 3.29
Real estate 3.11 2.84 3.18 3.80 4.99 4.84
Commodity 2.89 2.89 3.27 2.92 3.83 3.19
Bond 3.51 3.50 3.52 3.56 4.04 3.76
Defensive profile 2.11 2.11 2.11 2.12 2.20 2.16
Balanced profile 2.63 2.50 1.54 2.63 5.10 3.81
Aggressive profile  3.08 2.94 1.83 3.78 6.10 4.94

Datasource: DataStream and Bloomberg. Daily data from the 315t December, 1986 to the 28" Novem-
ber, 2011; computations by the authors. The asset classes as detailed in Footnote 11. A moving window

of four years (1,040 daily returns) is used to re-estimate parameters dynamically for the various meth-
ods. “Defensive Profile” corresponds to a mixed portfolio compound with 10% bond +90% Liquidity;
“Balanced Profile” 30% equity+10% Real Estate +10% commodity + 40% bond + 10% liquidity; and
“Aggressive Profile” 70% equity + 15% real estate + 15% commodity. The variable q, refers to the hit

*

test; g, to the independence test; q, to the magnitude test; and QI’ g;, qa; correspond to their resampling

versions, following Escanciano and Olmo (2009, 2010 and 2011). Panel A gives the minimum annualized
corrections for backtest at 5% confidence level on a 95% GARCH-VaR, Panel B the minimum k-ratio
(adjustment/VaR)for a 95% GARCH-VaR and Panel C the minimum k ratio model in the stress—VaR
context for 5% validity tests. The following shocks are considered for Panel C: -30% for the Equity index,
-40% for the real estate, -30% for commodity and -20% for bonds over a one—year horizon.
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Taken altogether, our results suggest that some VaR models are preferred
(e.g. the dynamic approaches such as the EWMA, CAViaR and GARCH
models), whilst others should be avoided (e.g. the Cornish-Fisher VaR or
extreme distribution based VaR) when comparing the minimum correction to
pass the frequency/hit test. Moreover, the independence and the magnitude
tests lead to more severe corrections on the estimated VaR than the frequency
test does. But whatever the model, the magnitude of the correction factors
can be sometimes exceptionally large, especially during major financial crisis
episodes such as the Great Depression of 1929 or the crisis of 2008. This
is why there is a direct link between the confidence level on the required
ex post correction (on the full historical sample), and the insurance against
these major historical financial turmoils. However, we also show that a 10
year sample of observations for calibrating the minimum correction to be
added, is sufficient to have a fairly good idea of the magnitude of the model
risk of risk models.

4 Conclusion

Standard risk measures failed to forecast extreme risks and regulators require
that financial institutions quantify this model risk of risk models. We propose
to adjust risk forecasts for model risk by the historical performance of the
model. In other words, the risk model learns from its past mistakes.

We first examine standard risk models by assessing how well they forecast risk
from a simulated process, designed to realistically capture the salient features
of financial returns. The experiment shows that model risk is significant and
ever present, in some cases, so large that it exceeds the actual risk forecast.

In our main contribution, we then propose a methodology for explicitly incor-
porating model risk corrections into risk forecasting by taking into account
the models’ performance on a range of standard back testing methodologies.

The general setup also enables us to evaluate the performance of standard
risk forecast models, by applying the basic principle that the lower the model
risk correction factor, the lower the model risk and, therefore, the better the
model. The results show that dynamic methods, such as EWMA, CAViAR
and GARCH VaR, have an advantage over static approaches such as Gaussian
and extreme density approaches. Somewhat surprisingly, the very simple
historical simulation approach is, if not the best method, close to the best.

We conclude by proposing an approach that provides a tailored methodology
for risk managers where they can explicitly relate the degrees of confidence
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in the correction factor to the distribution of past violations. In this, the
manager addresses three concerns: the VaR probability, the severity of tests
and the trust we want to put into the correction buffer. This can, for example,
enable a risk manager to explicitly consider extreme events, such as 1929 and
2008, or alternatively disregard their impact on risk forecasts.

The Basel Committee has recently proposed (BCBS, 2013) the use of a
stressed risk forecast as the main input into the current risk forecast. Such
an approach is an improvement over the existing methodology, and is par-
tially consistent with our methodology. The Committee indeed proposes to
rescale the risk forecasts by the ratio of the stressed and unstressed risk fac-
tors, such as the adjusted current risk forecast becomes more conservative
and thus less prone to exceptions. However, our proposal deals with this in a
more precise way. First, we adjust risk forecasts by their past errors, which
mainly come from these distressed periods. Second, we consider a confidence
level about the required correction factor linked the insurance against ma-
jor financial stress episodes. Finally, we define proper criteria for adjusting
the risk forecasts based on some properties of forecast errors such as their
frequency, their independence and their magnitude. In our view, the Basel
Committee proposal still ignores the model risk of risk forecasts and consists
of an adjustment of the current risk without an explicit criterion.

Our work can be extended in several ways. Our general correction framework
can be used when comparing the various tests of a desirable VaR proposed
in the literature (Berkowitz et al., 2011). The second extension could be to
apply some specific VaR models when judging the riskiness of some non-—
linear products using, this time, several pricing models. In the same vein,
evaluating the impact on asset allocation of integrating the model risk of risk
measures could be of interest, especially for asset allocation paradigms de-
pending on risk budgets, e.g. safety first criteria. The third extension could
be found in generalizing the comparison considering several time-horizons
(e.g. Cheridito and Stadje, 2009; Hoogerheide et al., 2011) or several quan-
tile levels (Colletaz et al., 2013). The fourth extension is about alternative
backtests when calibrating our model risk correction (see appendix for a list
of tests), in particular the D-test of Escanciano and Pei (2012) that com-
bines the nonparametric weighted backtest with the test of independence of
Christoffersen (1998) and offers good finite-sample size and power properties.
Another approach would to adopt the same methodology leading to an es-
timated multi-VaR, built as a portfolio of various VaR models (see Abdous
and Remillard, 1995), directly aiming to minimize the model risk (McAleer
et al., 2013). Finally, using the same metric of corrections, the quality of
other VaR based measures in a context of systemic risk measures (such as
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Marginal Expected Shortfall or CoVaR) would be worth considering (e.g.
Danielsson et al., 2011; Benoit et al., 2013; Loffler and Raupach, 2013).
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A Model risk when forecasting risk

Financial risk forecast models, just like any other statistical model, are thus
subject to model risk. In spite of this, almost all presentations of risk fore-
casts focus on point estimates, omitting any mention of model risk, not even
mentioning estimation risk. They are, however, subject to the same basic
elements of model risk as any other model, but are also subject to unique
model risk factors because of the specific application.

In order to formally identify the model risk factors, we propose a five level
classification scheme:

1. Parameter estimation error arises from uncertainty in the param-
eter values of the chosen model;

2. Specification error refers to the model risk stemming from inap-

propriate assumptions about the form of the data generating process
(DGP) for the random variable;

3. Granularity error is based on the impact of undiversified idiosyn-
cratic risk on the portfolio VaR;

4. Measurement error relates to the use of erroneous data when mea-
suring the risks and testing the models;

5. Liquidity risk is defined as the consequence of both infrequent quotes
and the inability to conduct sometimes a transaction at current market
prices because of the relatively too large size of the transaction.

The ultimate objective is to forecast VaR, where we indicate the estimate
by “estimated VaR” (denoted EVaR). It is a function of the portfolio size
and the true model parameters fy. In what follows, VaR is the (1 — )™
quantile (with o > .50) of the profit and loss distribution, so that the VaR
is negative (and expressed hereafter as a return for the sake of simplicity).
We also indicate the theoretical (or true) VaR by ThVaR (6, o). Thus, when
comparing the estimated VaR with the theoretical VaR (i.e. EVaR and
ThVaR respectively), we present both the buffer needed to directly adjust
the EVaR and the probability (or quantile) shift required. Our objective is
to approximate the errors or “biases” of VaR estimates since we do not know
the “true” DGP with real data. Biases defined hereafter are “errors” (that
can be repeated) that come mainly from the use of a wrong model and/or
the wrong specification regarding the “true” (assumed DGP). Our proposed
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procedure consists of approximating these errors, based on the minimum
correction needed not to reject a predefined consensual backtest. In the
following sub-sections, we detail these specific model risks that impact VaR
forecasts and provide some examples.

Estimation risk

Estimation risk occurs in every estimation process. Relatively small changes
in the estimation procedure or in the number of data observations can change
the magnitude and even the sign of some important decision variables. Thus,
estimation risk is the risk associated with an inaccurate estimation of param-
eters, due to the estimator quality and/or limited sample of data (past and/or
future), and/or noise in the data.

If PEAVaR denotes the perfect estimation adjusted VaR, EVaR(é,oz) the
estimated VaR and bias(0, 0y, @) the bias function, where # are the estimated
parameters, we have:

PEAVaR (0, 6y, a) = EVaR (6, a) + bias(6, 6y, ). (15)

Example 1 As an illustration, assuming an ARCH model, the estimation
risk (denoted herein ER(-)) is expressed in Gouriérouxr and Zakoian (2013),
as (with the previous notations):

EVaR(6, ) = ThVaR(6y, a) + ER(ThVaR(6y, ), 6, ),
with:

N o -1 N —1
05 y Uy - ) sy Uy )
ER [ThVaR(0y,a), a] —(2T)h [ThVaRwo a), 6 a} +o(T7)

where T is the length of the estimation period, o (T~') converges to a term
of order T~ and:

2 —1 -1 2
h[ThvaR(eo,a),e,a] - {{%(n_l,e,m—ThvaR(eo,a) [fgr (rt_l,e,r)] }}

X % [ri—1,0, ThV aR(6,, )] Q(6p) gg, [ri—1,0, ThVaR(6,, )]
9! 8%g
= (re,6,7) Tr{Q(eo) m[rt_l,e,mva}z(eo,aﬂ},
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andr = gri_1,0, ThVaR(0y, )], Q(0) the variance-covariance of parameters
in 0, g(.) a continuous function, strictly increasing with respect to the VaR
parameter and g~ (.) its inverse.

Specification risk

Specification error arises from using inappropriate assumptions about the
form of the DGP. We propose denoting the strong form of specification risk
as the risk from using a risk model which cannot capture the true unknown
DGP. The weak form of specification risk then corresponds to the risk of
using a risk model inadequate with the assumed, and hence known, DGP.

Consider the special case of knowing the true model parameters, but not
knowing the model. In this case, we can define the perfect specification
adjusted VaR (PSAVaR) as:

PSAVaR(6y, 0, ) = EVaR(0y, «) + bias(6p, 01, a), (16)

where 0, are known parameters, defined so that we can link the misspecified
model to the true model, with some mapping 6y = f(61).

Example 2 A simple measure of the specification risk (denoted as SR(-))
associated to the expansion of the unknown “true” theoretical model of VaR
(denoted ThVaR(0,)), can be written as:

EVaR(6,a) = ThVaR(6,a) + SR [ThVaR(@, @), d, a] ,

with:

R 2
SR ThVaR(e,a),é,a] _ % AVaR(9, o) _“] — 1\ sk
o
R 3 R
o ) |AVaR(0,0) —p| 3 AVaR(0, ) — p
24 o
R 3 R
), AVaR(0,a) —p| . AVaR(0, ) —
36 o
+o(T™),

Ku

Sk?



where ThVaR(0, ) is the “true” theoretical model of VaR, AVaR(0,q) is
the asymptotic a-quantile of the approrimate model in use, SR(-) is the spec-
ification error associated to this specific model and parameters i, o, Sk and
Ku stand, respectively, for the mean, the standard deviation, the skewness
and the kurtosis of the return distribution.

Granularity error

Granularity error is caused by the bias resulting from a finite number of as-
sets in portfolios and then by the resulting residual idiosyncratic risk, e.g.
see Gordy (2003), Wilde (2001). The granularity principle yields a decompo-
sition of such risk measures that highlights the different effects of systematic
and non-systematic risks.

More precisely, any portfolio risk measure can be decomposed into the sum
of an asymptotic risk measure corresponding to an infinite portfolio size and
1/n times an adjustment term where n is the portfolio size (number of assets).
The asymptotic portfolio risk measure, called the cross-sectional asymptotic
risk measure, captures the non-diversifiable effect of risks on the portfolio.
The adjustment term, called granularity adjustment, summarizes the effect
of the individual specific risks and their cross-effect with systematic risks,
when the portfolio size is large, but finite.

Suppose the theoretical VaR is based on an asymptotic factorial model, valid
asymptotically. In this case, we can apply a similar adjustment factor to
arrive at the perfect granularity adjusted VaR (PGAVaR) so that:

PGAVaR(6y, a,n) = EVaR(6y, o, N) + bias(6y, a, n), (17)
where n is the number of assets in the portfolio under study and N a large

number of assets for which the asymptotic model is valid.

Example 3 As an illustration, and following here Gagliardini and Gouriérouz
(2013), in the special case of independent stochastic drift and volatility, the
granularity risk (denoted below GR(-)) that impacts the estimated VaR can
be expressed as (with the previous notations):

EVaR(0,a,N) = ThVaR(0,a,n) + (n " GR(a) + o(n™),

with:

GR(0) = —(2)E {o?lg]} x {C”fl—f;@} ,
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where n is the number of assets in the portfolio under study, N a large number
of assets for which the asymptotic model is valid, ¢ = EV aR(0y, a, N) is the
quantile of a factor G and f(-) is its density function.

Measurement error

Financial data are prone to measurement errors caused by various phenomena
such as non-synchronous trading, rounding errors, infrequent trading, micro-
structure noise or insignificant volume exchanges. In addition, observed data
might be subject to manipulations (smoothing, extra revenues, fraudulent
exchanges, informationless trading, etc).

Measurement error risk can strongly distort backtesting results and signifi-
cantly affects the performance of standard statistical tests used to backtest
VaR models. Frésard et al. (2011) extensively document the phenomena
and report that a large fraction of banks artificially boost the performance
of their models by polluting their “true” profit and loss with extra revenues
that cause under-estimation of the true risk.

Example 4 Certain financial institutions report a contaminated PEL (de-
noted PL;) with extraneous profits (denoted m;) ) such as intraday revenues,
fees, commissions, net interest incomes and revenues from market making or
underwriting activities such as:

PL?ZPLt+7Tt,

with PL, the true profit at time t.

So, the estimated VaR is impacted by a contamination risk (denoted CR(-))
that reads:

EVaR(8,a,m) =ThVaR(0,a) + CR(T).

Liquidity risk

While liquidity has many meanings, from the point of view of risk forecasting,
the most relevant are some aspects of market liquidity, as defined by the
BCBS (2010), such as the ability to quickly trade large quantities, at a low
cost, without impacting the price. These directly follow from Kyle’s (1985)
three dimensions of liquidity: tightness, depth and resilience.

For portfolios of illiquid securities, reported returns will tend to be smoother
than true economic returns, which will understate volatility and increase
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risk-adjusted performance measures such as the Sharpe ratio. As an extreme
example of illiquidy, we can mention that the NY stock exchange remained
shut for more than four months at the beginning of the First World War
(from the 31° July, 1914 to the 12" December, 1914) and that the re-opening
brought the largest one-day percentage drop in the DJIA (-24.4%).13

Getmansky et al. (2004) propose, for instance, an econometric model of illig-
uidity exposure and develop estimators for the smoothing profile as well as
a smoothing-adjusted Sharpe ratio (that basically leads to the intensifica-
tion of the measured smoothed volatility by a factor to recover a proxy of
the true underlying volatility). Measures for gauging illiquidity exposure of
several asset classes are presented in Chan et al. (2006). Liquidity aspects
enter the Value-at-Risk methodology quite naturally. The VaR approach is
built on the hypothesis that “market prices represent achievable transaction
prices” (Jorion, 2007). In other words, the prices used to compute market
returns in the VaR models have to be representative of market conditions
and traded volume. Consequently, the price impact of portfolio liquida-
tion has to be taken into account. Chordia et al. (2001) find a significant
cross-sectional relation between stock returns and the variability of liquidity,
which is approximated by measures of trading activity such as volume and
turnover. Giot and Grammig (2005), using a weighted spread in an intraday
VaR framework, show that accounting for liquidity risk becomes a crucial
factor and that the traditional (frictionless) measures severely underestimate
the true VaR.

Example 5 As a simple illustration, we can formalize that risk using the
following relation (with the previous notations):

_PALt = PLt + 771,t + JILeﬂ-Q,ta

where w4 15 a factor that contributes to the smoothing of the released prices
and may a liquidity risk premium that only occurs when a liquidity event
happens (denoted Le, such as quotation interruption, due to large movement
in the market related to an exogenous shock: war, terrorist attack, a large
collapse ... ), modelled here thanks to a Heaviside function (11.) that takes
the value 1 when the event happens, which leads to a biased estimated VaR
with a liquidity risk (denoted LR(-)) as:

EVaR(0,a,m,m) =ThVaR(0, ) + LR(my, ).

13See e.g. Silber (2005).
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B Main Backtest Procedures (Web Appen-
dices)

We present hereafter three tests proposed in the literature to gauge the ac-
curacy of VaR estimates.

The first test for a good VaR is the so-called “traffic light” approach in the
regulatory framework, related to the Kupiec (1995) Proportion of Failure
Test. The Unconditional Coverage test (Kupiec, 1995) attempts to determine
whether the observed frequency of exceptions is consistent with the expected
frequency of exceptions according to a chosen VaR model and a confidence
interval (an exception occurs when the ez post return is below the ex ante
VaR). We define IFV*R(q) as the “hit variable” associated to the ez post
observation of EVaR(+) exceptions at the threshold « at date t, so that (with
previous notations):

Evar(), | _ J 1ifr, < —EVaR(0, o),
1, (a) =

0 otherwise,

(18)

where r; is the return on portfolio P at time ¢, with ¢t = [1,2,...,T].

If we assume that the IFVaR(.) variables are independently and identically
distributed, then, under the Unconditional Coverage hypothesis of Kupiec
(1995), the cumulated number of VaR violations follows a Binomial distribu-
tion, denoted B(T, «), as (see Christoffersen, 1998):

T
Hit, " (0) = Y 17 (a) ~ B(T, a). (19)

t=1

A perfect sequence of (corrected) empirical VaR in the sense of this test (not
too aggressive, but not too confident), is such that it respects condition (19).

The second test for a good VaR concerns the independence of forecasting er-
rors. The independence hypothesis is associated to the idea that if the VaR
model is correct then violations associated to VaR forecasting should be in-
dependently distributed, it is also the independence of exceptions hypothesis.
If the exceptions exhibit some type of “clustering”, then the VaR model may

4Note that the Basel “traffic light” backtesting framework is directly inspired by this
unconditional coverage test. Escanciano and Pei (2012) show, however, that this uncon-
ditional test is always inconsistent in detecting non-optimal VaR forecasts based on the
historical method. In the following, nevertheless, we consider for our adjustment proce-
dure three of the main tests (including the unconditional coverage test), as well as their
bootstrapped corrected versions.
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fail to capture the profit and loss variability under certain conditions, which
could represent a potential problem down the road. Christoffersen (1998)
supposes that, under the alternative hypothesis of VaR inefficiency, the pro-
cess of IP'VaR(q) violations is modelled with a Markov chain whose matrix of
transition probabilities is defined by:

I = ( oo o1 ) : (20)

0 711

where m;; = Pr [IFV*R(a) = jIIF® =4]. This Markov chain reflects the
existence of an order 1 memory in the process IFV2®(«). The probability of
having a violation (not having one) for the current period depends on the
occurrence or not of a violation (for the same level of coverage rate) in the
previous period. Christoffersen (1998) shows that the likelihood ratio for the
test is:

LRind ™" = 2 [log L") (71, 711) — log L'z, m)| £ (1),
(21)
where L To1,m11) is thus the likelihood under the hypothesis of the
first-order Markov dependence, and L VaR(a)(ﬂ',ﬂ') is the likelihood under

the hypothesis of independence 7y, = 71 = 7 as:

P () (

LI;EWR(&)(WOM 7T11) = (1 - 7To1)TOO7T(F3F110(1 - 7T11)T107Tip1117

and:
LItEVaR(a) <7T, 71') _ (1 . W>T00+T107TT01+T11

Y

with 7Tj; the number of observations in the state j for the current period and
at state ¢ for the previous period, mo1 = To1/(Too+To1), m11 = T11/(Tho+T11)
and ™ = (T01 + TH)/T

A perfect sequence of corrected (empirical) VaR in the sense of this test (i.e.
not too reactive, but not too smooth) is such that it respects condition (21).

A third category of tests considers the magnitude or size of violation. This
class of tests is based on the intuition that VaR exceptions are treated as
continuous random variables. For this test, Berkowitz (2001) transforms the
empirical series into a standard normal z;,; series. He defines the observed
quantile g;41 with the distribution forecast f;.; for the observed portfolio
return r; as:

qi+1 :/t+1 fera(r)dr. (22)
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The z;1 values are then compared to the normal random variables with the
desired coverage level of the VaR estimates:

Zip1 = q)fl(%ﬂ), (23)

where ®~1(+) is the quantile function of the standard normal density.

If the VaR model generating the empirical quantiles is correct, then the ;.
series should be identically distributed with the unconditional mean and
standard deviation, denoted (u, o) and should equal (0, 1), as such:

i Zt+1 if Zt4+1 < (bil(Oé)
Vi1 = { 0 otherwise, (24)

where ®(-) is the standard normal cumulative distribution function.

Finally, the corresponding test statistic is:

LRmag" = 2 [L1 (1, 0) — L2 (0,1)] <> y2(2), (25)

mag mag

where:

Bid1:0) = T los {1 -0 {202}
T E{%H#O} {_% 10g(27T0’ ) (%+217M log {CI) {W}}} )

A perfect sequence of (corrected) empirical VaR in the sense of this test
(i.e. not too conservative, but not too over-confident) is such that it respects
condition (25).

For unconditional and conditional coverage tests, Escanciano and Olmo (2009,
2010 and 2011) approximate the critical values. Thus, they propose to use
robust sub-sampling techniques to approximate the true distribution of these
tests. However, they also show that although the estimation risk can be di-
versified by choosing a large in-sample size relative to an out-of-sample one,
the risk associated to the model cannot be eliminated using sub-sampling.
Indeed, let G,(z) denote the cumulative distribution function of the test
statistic k for any x € IR, and, ky; = K(t,t +1,---,t +b — 1), with
t = [1,2,---,T — b+ 1], the test statistic computed with the subsample
[1,2,---, T — b+ 1] of size b.

Hence, the approximated sampling cumulative distribution function of k,
denoted Gy, (x), built using the distribution of the values of k;; computed
over the (7' — b+ 1) different consecutive subsamples of size b is given by:

T b+1

G (z) = (T =b+1)" Z 1 <o} (26)
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The (1 — 7)™ sample quantile of Gy,, is given by:

Copi—r = dnf {z |Gy, (z) > 1 —1}.
zeIR
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C Miscellaneous Complementary Results (Web
Appendices)
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Table A.1. Illustrations of Unconditional Simulated Errors
associated to the 95%, 99% and 99.5% Annualized VaR: Gaussian
versus t-Student Quantiles

Panel A. Gaussian DGP and Gaussian VaR
with Estimation Error

Mean Perfect  Mean  Median Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -29.49%  .00% .00% -7.93%  7.24%
a = 99.00% -41.88% -41.88%  .00% .00% -9.92%  9.17%
a = 99.50% -46.41% -46.41%  .00% 00%  -12.45% 10.16%

Panel B. t-Student(5) DGP and Gaussian VaR
with Specification Error

Mean Perfect =~ Mean  Median  Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -36.22% -6.73%  -6.73%  -6.73%  -6.73%
a = 99.00% -41.88% -60.75% -18.87% -18.87% -18.87% -18.87T%
a = 99.50% -46.41% -72.87% -26.46% -26.46% -26.46% -26.46%

Panel C. t-Student(5) DGP and Gaussian VaR
with Specification and Estimation Errors

Mean Perfect Mean  Median Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -36.22% -6.73%  -6.73% -13.97% 1.20%
a = 99.00% -41.88% -60.75% -18.87% -18.87% -28.04% -8.95%
a = 99.50% -46.41% -72.87T% -26.46% -26.46% -36.62% -14.01%

Source: Bloomberg; daily data of the DJIA index in USD from the 1% January, 1900
to the 20" September, 2011. These statistics were computed with the results of 100,000
simulated series of 250 daily returns according to a specific DGP (Gaussian for Panel A and
t-Student(5) for Panel B and C) and using an annualized parametric VaR. The columns
represent, respectively, the average Estimated VaR with specification or/and estimation
errors, the Theoretical VaR, and the average-minimum-maximum of the adjustment terms
of all samples. A positive adjustment term indicates that the Estimated VaR (negative
return) should be more conservative (more negative).
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Table A.2. Estimated Annualized VaR and Model-risk Errors (%)
in the Brownian Case

Three price processes of the asset returns are considered below, such as for ¢t = [1,--- ,T]
and p=[1,2,3]:

dSt = St(ﬂdt + O'th + JtpdNt),
with J} = 0 for Brownian, where S; is the price of the asset at time ¢, W; is a standard
Brownian motion, independent from the Poisson process IV, governing the jumps of various

intensities J? (null, constant or time-varying according to the process p).

Panel A. Gaussian DGP and Gaussian VaR
with Estimation Error

Mean Perfect  Mean  Median Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -24.78% -24.78%  .00% 00% -8.69%  10.16%
a = 99.00% -35.74% -35.74%  .00% 00%  -14.21%  20.70%
a = 99.50% -39.95% -39.95%  .00% 00%  -16.04%  28.92%

Panel B. Brownian DGP and Gaussian VaR
with Specification Error

Mean Perfect =~ Mean  Median  Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -36.22% -6.73%  -6.73%  -6.73%  -6.73%
a = 99.00% -41.88% -60.75% -18.87% -18.87% -18.87% 18.87T%
a = 99.50% -46.41% -72.87% -26.46% -26.46% -26.46% 26.46%

Panel C. Brownian DGP and Gaussian VaR
with Specification and Estimation Errors

Mean Perfect =~ Mean  Median Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -36.22% -6.73% -6.73% -13.97% 1.20%
a = 99.00% -41.88% -60.75% -18.87% -18.87% -28.04% -8.95%
a = 99.50% -46.41% -72.87T% -26.46% -26.46% -36.62% -14.01%

Source: simulations by the authors. Errors are defined as the differences between the
“true” asymptotic simulated VaR and the Estimated VaR. These statistics were com-
puted with a series of 250,000 simulated daily returns with specific DGP (Brownian),
averaging the parameters estimated in Ait-Sahalia et al. (2013, Table 2, i.e. $=41.66%,
A3=1.20% and v=22.22%), and ez post recalibrated for sharing the same first two mo-
ments (i.e. p=.12% and 0=1.02%) and the same mean jump intensity (for the last two
processes — which leads after rescaling hereAfpr instance, to an intensity of the Lévy such
as: Ao=1.06%). Per convention, a negative adjustment term in the table indicates that
the Estimated VaR (negative return) should be more conservative (more negative).



Table A.3. Estimated Annualized VaR and Model-risk Errors (%)
in the Lévy Case

Three price processes of the asset returns are considered below, such as for ¢t = [1,--- ,T]
and p = [1,2, 3]:

dSt St(ﬂdt + O'th + ‘]t dNt)
with J? = Xgexp(—Aot) for Lévy, where S; is the price of the asset at time ¢, W; is
a standard Brownian motion, independent from the Poisson process Ni, governing the
jumps of various intensities JP (null, constant or time-varying according to the process

p), defined by parameters, Ao, which is a positive constant.

Panel A. Gaussian DGP and Gaussian VaR
with Estimation Error

Mean Perfect =~ Mean  Median  Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -24.78% -24.78%  .00% .00% -8.69%  10.16%
a = 99.00% -35.74% -35.74%  .00% 00%  -14.21%  20.70%
a = 99.50% -39.95% -39.95%  .00% 00%  -16.04% 28.92%

Panel B. Lévy DGP and Gaussian VaR
with Specification Error

Mean Perfect =~ Mean  Median Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -36.22% -6.73%  -6.73%  -6.73%  -6.73%
a = 99.00% -41.88% -60.75% -18.87% -18.87% -18.87% -18.87T%
a = 99.50% -46.41% -72.87T% -26.46% -26.46% -26.46% -26.46%

Panel C. Lévy DGP and Gaussian VaR
with Specification and Estimation Errors

Mean Perfect Mean  Median Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -36.22%  -6.73%  -6.73% -13.97% 1.20%
a = 99.00% -41.88% -60.75% -18.87% -18.87% -28.04% -8.95%
a = 99.50% -46.41% -72.87T% -26.46% -26.46% -36.62% -14.01%

Source: simulations by the authors. Errors are defined as the differences between the
“true” asymptotic simulated VaR and the Estimated VaR. These statistics were computed
with a series of 250,000 simulated daily returns with specific DGP (Lévy), averaging the
parameters estimated in Alt-Sahalia et al. (2013, Table 2, i.e. $=41.66%, A3=1.20% and
~v=22.22%), and ez post recalibrated for sharing the same first, two moments (i.e. u=12%
and 0=1.02%) and the same mean jump Httensity (for the last two processes - which
leads after rescaling here, for instance, to an intensity of the Lévy with A2=1.06%). Per
convention, a negative adjustment term in the table indicates that the Estimated VaR
(negative return) should be more conservative (more negative).



Table A.4. Estimated annualized VaR and model-risk errors (%)
in the Hawkes Case

Three price processes of the asset returns are considered below, such as for ¢t = [1,--- ,T]
and p = [1,2, 3]:

dS; = Sy(pdt + odW, + JYdNy),
with J? = A3 + Bexp[—v(t — s)] for Hawkes, where S; is the price of the asset at time ¢, W;
is a standard Brownian motion, independent from the Poisson process N, governing the
jumps of various intensities J? (null, constant or time-varying according to the process p),
defined by parameters, A3, 8 and =y, which are positive constants with s the date of the

last observed jump.

Panel A. Gaussian DGP and Gaussian VaR
with Estimation Error

Mean Perfect =~ Mean  Median ~ Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -24.78% -24.78%  .00% .00% -8.69%  10.16%
a = 99.00% -35.74% -35.74%  .00% 00%  -14.21%  20.70%
a = 99.50% -39.95% -39.95%  .00% 00%  -16.04% 28.92%

Panel B. Hawkes DGP and Gaussian VaR
with Specification Error

Mean Perfect Mean  Median Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -36.22% -6.73% -6.73%  -6.73%  -6.73%
a = 99.00% -41.88% -60.75% -18.87% -18.87% -18.87% -18.87T%
a = 99.50% -46.41% -72.87T% -26.46% -26.46% -26.46% -26.46%

Panel C. Hawkes DGP and Gaussian VaR

with Specification and Estimation Errors

Mean Perfect  Mean  Median Min. Max.
Probability Estimated VaR ~ VaR Bias Bias Bias Bias
a = 95.00% -29.49% -36.22% -6.73%  -6.73% -13.97% 1.20%
a = 99.00% -41.88% -60.75% -18.87% -18.87% -28.04% -8.95%
a = 99.50% -46.41% -72.87% -26.46% -26.46% -36.62% -14.01%

Source: simulations by the authors. Errors are defined as the differences between the
“true” asymptotic simulated VaR and the Estimated VaR. These statistics were computed
with a series of 250,000 simulated daily returns with specific DGP (Hawkes), averaging
the parameters estimated in Ait-Sahalia et (2013, Table 2, i.e. $=41.66%, A3=1.20%
and v=22.22%), and ex post recalibrated for sharing the same first two moments (i.e.
p=.12% and 0=1.02%) and the same mean jump intensity. Per convention, a negative
adjustment term in the table indicates that the Estimated VaR (negative return) should
be more conservative (more negative).



Table A.5. A Road Map of the Main Risk Model Validation Tests

Exception Frequency Tests

Intuition: test the violation frequency that should be equal to the probability threshold

An Unconditional Coverage Test - Kupiec (1995)
A GMM Duration Test - Candelon et al. (2011)
A Z-test - Jorion (2007)
A Multi-variate Unconditional Coverage Test - Pérignon and Smith (2008)
A D-test - Escanciano and Pei (2012)

Exception Independence Tests

Intuition: test the violations associated to the VaR forecasting that should be independent
(not clustered and/or no forecasting power via a time-series model for extremes)

An Independence Test - Christoffersen (1998)
A Violation Duration-based Test - Christoffersen and Pelletier (2004)
A Discrete Violation Duration-based Test - Haas (2005)
A Dynamic Quantile Test - Engle and Manganelli (2004)
A GMM Duration Test - Candelon et al. (2011)
A Multivariate Test of Zero-autocorrelation of Violations - Hurlin and Tokpavi (2006)
An Estimation-risk adjusted Test - Escanciano and Olmo (2009, 2010 and 2011)

Exception Frequency and Independence of Violations Tests

Intuition: test jointly the hit ratio and the independence of VaR violations

A Conditional Coverage Test - Christoffersen (1998)
A GMM Duration Test - Candelon et al. (2011)
A Dynamic Binary Response Test - Dumitrescu et al. (2012)

Exception Magnitude Tests

Intuition: test the amplitude of VaR violations (that should be small)

A Magnitude Test (under normality assumption) - Berkowitz (2001)
A Test based on a Loss Function - Lopez (1998 and 1999)
A Two-stage Test (Coverage Rate and Loss Function) - Angelidis and Degiannakis (2007)
A Double-threshold Test - Colletaz et al. (2013)

Exceedances for Expected Shortfall Test

Intuition: Measure the observed ES, then compare to a local approzimated value
(and the difference should be small)

A Saddlepoint Technique Test for ES - Wong (2008 and 2010)

See, among others, Campbell (2007), Nieto and Ruiz (2008) and Berkowitz
et al. (2011) for comprehensive surveyg.
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Table A.6. Dates of the Maximum Adjustment for different 95% VaRs
and Backtests Models at 5% Confidence Level

VaR Dates a, Dates g; Dates a, Dates g; Dates a, Dates g;
Methods
Historical 1 02/09/2009 42.02% 01/16/2009 32.80% 09/08/1930 78.26% 04,/06/2009 52.18% 08/24/2009 49.91% 09/08/1930 95.06%
2 11/28/2008 40.60% 01/06/1930 31.94% 04,/06/2009 46.46% 08/24/2009 42.02% 09/08/1930 48.91% 04/21/1930 78.26%
3 10/16/1930 39.97% 01/05/1933 21.73% 07/25/1988 42.52% 04/21/1930 40.15% 04,/06/2009 47.68% 12/02/1929 72.61%
4 12/11/1929 37.75% 01/06/1931 19.87% 03/07/1988 40.82% 12/02/1929 37.79%% 11/17/2008 46.46% 04,/06/2009 65.07%
Normal 1 11/28/2008 42.86% 01/16/2009 30.07% 09/08/1930 74.43% 08/24/2009 44.46% 04,/06/2009 44.46% 09/08/1930 88.47%
2 12/11/1929 38.57% 01/06/1930 25.55% 07/25/1988 39.56% 11/17/2008 42.86% 11/17/2008 42.86% 12/02/1929 74.43%
3 09/14/2009 38.07% 01/05/1933 17.88% 12/02/1929 38.57% 09/08/1930 42.45% 12/02/1929 38.86% 11/17/2008 62.83%
4 11/11/1929 36.69% 01/06/1938 14.92% 03/07/1988 34.42% 12/02/1929 38.86% 04/21/1930 38.57% 04/21/1930 59.24%
Student 1 11/28/2008 40.16% 01/16/2009 30.02% 09/08/1930 68.50% 04/06/2009 45.93% 09/08/1930 50.18% 09/08/1930 101.52%
2 12/11/1929 33.06% 01/06/1930 18.40% 12/02/1929 68.18% 08/24/2009 40.27% 04/06/2009 44.50% 11/17/2008 86.13%
3 09/14/2009 32.85% 01/05/1933 14.25% 07/25/1988 35.52% 12/02/1929 35.86% 12/02/1929 33.57% 03/07/1988 71.79%
4 11/11/1929 31.43% 01/13/1975 11.14% 03/07/1988 30.26% 09/08/1930 34.80% 04/21/1930 33.06% 12/02/1929 68.50%
Cornish 1 05/13/1915 133.65% 01/04/1916 120.56% 02/14/1916 135.43% 09/27/1915 142.87% 09/27/1915 135.43% 09/27/1915 142.87%
Fisher 2 05/07/1915 133.36% 01/04/1915 106.47% 09/27/1915 133.86% 05/10/1915 133.86% 05/10/1915 133.86% 05/10/1915 130.22%
3 05/06/1915 131.48% 01/03/1917 82.83% 05/10/1915 133.65% 02/14/1916 114.82% 02/14/1916 117.67% 04/09/1917 111.55%
4 05/04/1915 130.22% 01/14/1988 76.04% 09/08/1930 93.47% 07/03/1916 90.03% 03/07/1988 90.73% 09/08/1930 93.47%
Risk 1 03/28/1938 15.85% 01/04/1921 10.50% 05/10/1915 32.76% 12/02/1929 16.43% 12/02/1929 16.43% 03/21/1932 46.62%
Metrics 2 10/28/1929 15.02% 01/06/1938 9.14% 12/02/1929 31.91% 05/03/1920 16.33% 05/09/1938 16.04% 12/20/1937 32.36%
3 03/15/1938 14.80% 01/02/1908 7.88% 04/21/1930 30.51% 09/26/1938 15.85% 12/20/1937 14.57% 03/07/1988 31.92%
4 01/25/1938 14.57% 01/06/1930 5.64% 07/25/1988 26.69% 09/08/1930 15.02% 05/03/1920 14.35% 12/02/1929 31.91%
GARCH 1 03/24/1938 18.24% 01/06/1930 15.50% 09/08/1930 41.44% 05/09/1938 18.48% 12/02/1929 19.42% 05/09/1938 39.61%
2 04,/06/1938 18.15% 01/06/1938 9.28% 12/02/1929 34.12% 12/20/1937 18.24% 05/03/1920 18.55% 11/02/1931 35.40%
3 10/28/1929 17.17% 01/02/1908 8.09% 07/25/1988 32.49% 09/26/1938 18.15% 05/09/1938 18.48% 12/20/1937 34.98%
4 03/15/1938 16.78% 01/17/2008 7.01% 03/07/1988 30.73% 12/02/1929 17.17% 09/08/1930 17.17% 03/07/1988 33.59%
CAViaR 1 01/21/1994 30.10% 01/17/2008 24.96% 09/24/2007 41.75% 02/11/2008 35.73% 09/24/2007 33.48% 03/21/1932 41.32%
2 06,/06/2007 29.81% 01/14/1994 20.53% 09/08/1930 41.44% 04/25/1994 32.95% 04/25/1994 31.72% 11/30/1998 38.82%
3 02/26/2008 28.11% 01/17/2006 15.47% 12/02/1929 34.12% 09/24/2007 32.64% 04/19/1999 23.31% 10/19/1987 33.59%
4 03/11/2008 26.93% 01/15/1999 13.87% 07/25/1988 32.49% 09/12/1994 31.72% 07/31/2006 19.50% 04/19/1999 31.35%
GEV 1 11/28/2008 39.05% 01/06/1930 32.12% 09/08/1930 72.11% 08/24/2009 48.25% 04/06/2009 45.07% 04/21/1930 112.42%
2 12/11/1929 36.82% 01/16/2009 29.52% 12/02/1929 61.01% 04/06/2009 41.84% 08/24,/2009 41.84% 09/08/1930 75.87%
3 11/11/1929 35.24% 01/05/1933 14.55% 03/07/1988 34.35% 04/21/1930 37.15% 04/21/1930 39.52% 12/02/1929 72.11%
4 09/14/2009 33.32% 01/08/1947 13.62% 11/17/2008 29.52% 12/02/1929 35.24% 11/17/2008 39.05% 11/17/2008 56.53%
GPD 1 11/28/2008 37.89% 01/16/2009 26.98% 09/08/1930 71.38% 11/17/2008 42.33% 04/06/2009 43.75% 04/21/1930 105.01%
2 09/14/2009 34.58% 01/06/1930 25.64% 04/06/2009 42.33% 04/21/1930 35.69% 08/24,/2009 42.33% 09/08/1930 71.38%
3 12/11/1929 32.86% 01/06/1931 10.30% 12/02/1929 32.86% 12/02/1929 32.86% 04/21/1930 32.86% 12/02/1929 67.67%
4 07/18/1930 32.80% 01/05/1933 7.67% 07/25/1988 31.95% 05/09/1938 29.66% 09/08/1930 32.80% 11/17/2008 52.51%

Source: Bloomberg; daily data of the DJIA index in USD from the 1%¢ January, 1900 to the 20*" September, 2011. We use a moving
window of four years (1,040 daily returns) to re-estimate parameters dynamically for the various methods. The variable 4, refers to

the hit test; q, to the independence test; q, to the magnitude test; and g? g; g; correspond to their resampling versions, following
Escanciano and Olmo (2009, 2010 and 2011).



Table A.7. Minimum k Ratio Model Risk for 95% Annualized
Value-at-Risk Models for various Validity Tests with 5%

VaR Methods Mean VaR q, g’lk 4, g; q, QZ
Historical -25.78% 237 208 329 253 259 3.79
Normal -27.09% 226 1.84 284 231 232 3.18
Student -30.52% 202 1.73 252 204 204 3.31
Cornish-Fisher  -20.25% 345 373 488 4776 3.72 4.88
RiskMetrics -25.67% 1.71 20.77 57.18 41.47 36.84 101.69
GARCH -25.99% 1.59 1.75 265 185 194 2.35
CAViaR -26.84% 10.95 9.82 23.89 &9 8.55 7.6
GEV -29.71% 201 172 237 213 2.06 3.24
GPD -33.97% 204 169 264 221 201 3.63

Source: Bloomberg; daily data of the DJIA index in USD from the 15* January, 1900 to
the 20" September, 2011. We use a moving window of four years (1,040 daily returns) to
dynamically re-estimate parameters for the various methods. The variable q, refers to the

hit test; q, to the independence test; q, to the magnitude test; and gi, g;, Q; correspond
to their resampling versions, following Escanciano and Olmo (2009, 2010 and 2011).
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Figure A.1: Risk Map for Maximum Annualized Adjustment
Values at 5% Confidence Levels for Tests for 95% and 99%
Value-at-Risk Models
(see Colletaz et al., 2013)
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Source: Bloomberg; daily data of the DJIA index in USD from the 15* January, 1900 to
the 20*" September, 2011; computations by the authors. We use a moving window of
four years (1,040 daily returns) to dynamically re-estimate parameters for the various
methods. The variable ¢ refers to the hit test; g2 to the independence test; g3 to
the magnitude test; and ¢, ¢35, ¢35 correspond to their resampling versions, following
Escanciano and Olmo (2009, 2010 and 2011).
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Figure A.2: Dynamic Optimal Adjustment on the Daily 95% VaR
related to the Hit Test for 10-Year Sample Estimation Data
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Source: Bloomberg; daily data of the DJIA index in USD from the 15* January, 1900 to
the 7" October, 2013; computations by the authors. We use a moving window of ten

years (2,600 daily returns) to re-estimate parameters dynamically for the various methods.
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Figure A.3: Optimal Dynamic Absolute Value of Minimum
Negative Adjustments for the Hit Test for Different 95% VaR -
10-Year Sample Estimation Data
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Source: Bloomberg; daily data of the DJIA index

the 7*" October, 2013; computations by the authors. We use a moving window of ten
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in USD from the 15° January, 1900 to

years (2,600 daily returns) to re-estimate parameters dynamically for the various methods.
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Figure A.4: Optimal Dynamic Relative Adjustment for the Hit
Test for Different Starting Dates and 95% VaR by Horizon (in
years) - 10 Years Sample Estimation Data
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Source: Bloomberg; daily data of the DJIA index in USD from the 1% January, 1900
to the 7" October, 2013; computations by the authors. We use a moving window of
ten years (2,600 daily returns) to dynamically re—estimate parameters for the various
methods. This figure illustrates the dynamic negative adjustment required for passing
the hit test, having randomly chosen the first date of implementation. Optimal relative
negative adjustments are here expressed in terms of the percentage of their maximum

value over the whole sample.
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Figure A.5: Optimal Dynamic Relative Adjustment for the Hit
Test for Different Starting Dates and 95% VaR by Horizon (in
years) — 4 years and 10 years VaR Estimation
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Source: Bloomberg; daily data of the DJIA index in USD from the 15* January, 1900 to
the 7" October, 2013; computations by the authors. We use a moving window of four
and ten years to dynamically re-estimate parameters for the various methods. This figure
illustrates the dynamic negative adjustment required for passing the hit test, having
randomly chosen the first date of implementation. Optimal relative negative adjustments
are here expressed in terms of the percentage of their maximum value over the whole

sample.
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Figure A.6: Ratio Ten/Four Year Optimal Dynamic Relative
Adjustment for the Hit Test for Different Starting Dates and 95%
VaR by Horizon (in years)
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Source: Bloomberg; daily data of the DJIA index in USD from the 15* January, 1900 to
the 7" October, 2013; computations by the authors. We use a moving window of four
and ten years to dynamically re—estimate parameters for the various methods. This figure
illustrates the dynamic negative adjustment required for passing the hit test, having
randomly chosen the first date of implementation. Optimal relative negative adjustments
are here expressed in terms of the percentage of their maximum value over the whole

sample.
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